Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cells ; 11(17)2022 08 29.
Article in English | MEDLINE | ID: mdl-36078091

ABSTRACT

The study of human neurological infection faces many technical and ethical challenges. While not as common as mammalian models, the use of Drosophila (fruit fly) in the investigation of virus-host dynamics is a powerful research tool. In this review, we focus on the benefits and caveats of using Drosophila as a model for neurological infections and neuroimmunity. Through the examination of in vitro, in vivo and transgenic systems, we highlight select examples to illustrate the use of flies for the study of exogenous and endogenous viruses associated with neurological disease. In each case, phenotypes in Drosophila are compared to those in human conditions. In addition, we discuss antiviral drug screening in flies and how investigating virus-host interactions may lead to novel antiviral drug targets. Together, we highlight standardized and reproducible readouts of fly behaviour, motor function and neurodegeneration that permit an accurate assessment of neurological outcomes for the study of viral infection in fly models. Adoption of Drosophila as a valuable model system for neurological infections has and will continue to guide the discovery of many novel virus-host interactions.


Subject(s)
Communicable Diseases , Drosophila Proteins , Viruses , Animals , Communicable Diseases/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Humans , Mammals/metabolism , RNA Interference , Viruses/metabolism
2.
Front Neurol ; 13: 914411, 2022.
Article in English | MEDLINE | ID: mdl-35812094

ABSTRACT

In this article we review complications to the peripheral nervous system that occur as a consequence of viral infections, with a special focus on complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We discuss neuromuscular complications in three broad categories; the direct consequences of viral infection, autoimmune neuromuscular disorders provoked by viral infections, and chronic neurodegenerative conditions which have been associated with viral infections. We also include discussion of neuromuscular disorders that are treated by immunomodulatory therapies, and how this affects patient susceptibility in the current context of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is associated with direct consequences to the peripheral nervous system via presumed direct viral injury (dysgeusia/anosmia, myalgias/rhabdomyolysis, and potentially mononeuritis multiplex) and autoimmunity (Guillain Barré syndrome and variants). It has important implications for people receiving immunomodulatory therapies who may be at greater risk of severe outcomes from COVID-19. Thus far, chronic post-COVID syndromes (a.k.a: long COVID) also include possible involvement of the neuromuscular system. Whether we may observe neuromuscular degenerative conditions in the longer term will be an important question to monitor in future studies.

3.
Viruses ; 14(3)2022 02 25.
Article in English | MEDLINE | ID: mdl-35336878

ABSTRACT

Interferon (IFN) -stimulated genes (ISGs) are critical effectors of IFN response to viral infection, but whether ISG expression is a correlate of protection against HIV infection remains elusive. A well-characterized subcohort of Kenyan female sex workers, who, despite being repeatedly exposed to HIV-1 remain seronegative (HESN), exhibit reduced baseline systemic and mucosal immune activation. This study tested the hypothesis that regulation of ISGs in the cells of HESN potentiates a robust antiviral response against HIV. Transcriptional profile of a panel of ISGs with antiviral function in PBMC and isolated CD4+ T cells from HESN and non-HESN sex worker controls were defined following exogenous IFN-stimulation using relative RT-qPCR. This study identified a unique profile of proinflammatory and proapoptotic ISGs with robust but transient responses to exogenous IFN-γ and IFN-α2 in HESN cells. In contrast, the non-HESN cells had a strong and prolonged proinflammatory ISG profile at baseline and following IFN challenge. Potential mechanisms may include augmented bystander apoptosis due to increased TRAIL expression (16-fold), in non-HESN cells. The study also identified two negative regulators of ISG induction associated with the HESN phenotype. Robust upregulation of SOCS-1 and IRF-1, in addition to HDM2, could contribute to the strict regulation of proinflammatory and proapoptotic ISGs in HESN cells. As reducing IRF-1 in the non-HESN cells resulted in the identified HESN ISG profile, and decreased HIV susceptibility, the unique HESN ISG profile could be a correlate of protection against HIV infection.


Subject(s)
HIV Infections , Sex Workers , Antiviral Agents , Female , Humans , Inflammation , Kenya , Leukocytes, Mononuclear , Phenotype
4.
Microorganisms ; 9(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34361946

ABSTRACT

Integrase (IN) enzymes are found in all retroviruses and are crucial in the retroviral integration process. Many studies have revealed how exogenous IN enzymes, such as the human immunodeficiency virus (HIV) IN, contribute to altered cellular function. However, the same consideration has not been given to viral IN originating from symbionts within our own DNA. Endogenous retrovirus-K (ERVK) is pathologically associated with neurological and inflammatory diseases along with several cancers. The ERVK IN interactome is unknown, and the question of how conserved the ERVK IN protein-protein interaction motifs are as compared to other retroviral integrases is addressed in this paper. The ERVK IN protein sequence was analyzed using the Eukaryotic Linear Motif (ELM) database, and the results are compared to ELMs of other betaretroviral INs and similar eukaryotic INs. A list of putative ERVK IN cellular protein interactors was curated from the ELM list and submitted for STRING analysis to generate an ERVK IN interactome. KEGG analysis was used to identify key pathways potentially influenced by ERVK IN. It was determined that the ERVK IN potentially interacts with cellular proteins involved in the DNA damage response (DDR), cell cycle, immunity, inflammation, cell signaling, selective autophagy, and intracellular trafficking. The most prominent pathway identified was viral carcinogenesis, in addition to select cancers, neurological diseases, and diabetic complications. This potentiates the role of ERVK IN in these pathologies via protein-protein interactions facilitating alterations in key disease pathways.

5.
Pathogens ; 9(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066207

ABSTRACT

Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis (EBL). The long terminal repeat (LTR) plays an indispensable role in viral gene expression. The BLV Tax protein acts as the main transactivator of LTR-driven transcription of BLV viral genes. The aim of this study was to analyze mutations in the BLV LTR region and tax gene to determine their association with transcriptional activity. LTRs were obtained from one hundred and six BLV isolates and analyzed for their genetic variability. Fifteen variants were selected and characterized based on mutations in LTR regulatory elements, and further used for in vitro transcription assays. Reporter vectors containing the luciferase gene under the control of each variant BLV promoter sequence, in addition to variant Tax expression vectors, were constructed. Both types of plasmids were used for cotransfection of HeLa cells and the level of luciferase activity was measured as a proxy of transcriptional activity. Marked differences in LTR promoter activity and Tax transactivation activity were observed amongst BLV variants. These results demonstrate that mutations in both the BLV LTR and tax gene can affect the promoter activity, which may have important consequences on proviral load, viral fitness, and transmissibility in BLV-infected cattle.

6.
Viruses ; 12(10)2020 09 25.
Article in English | MEDLINE | ID: mdl-32992917

ABSTRACT

Human T-lymphotrophic virus type 1 (HTLV-1) and Bovine leukemia virus (BLV) belong to the Deltaretrovirus genus. HTLV-1 is the etiologic agent of the highly aggressive and currently incurable cancer adult T-cell leukemia (ATL) and a neurological disease HTLV-1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). BLV causes neoplastic proliferation of B cells in cattle: enzootic bovine leucosis (EBL). Despite the severity of these conditions, infection by HTLV-1 and BLV appear in most cases clinically asymptomatic. These viruses can undergo latency in their hosts. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infection, as well as for pathogenesis in vivo. In this review, we will present the mechanisms that control proviral activation and retroviral latency in deltaretroviruses, in comparison with other exogenous retroviruses. The 5' long terminal repeats (5'-LTRs) play a main role in controlling viral gene expression. While the regulation of transcription initiation is a major mechanism of silencing, we discuss topics that include (i) the epigenetic control of the provirus, (ii) the cis-elements present in the LTR, (iii) enhancers with cell-type specific regulatory functions, (iv) the role of virally-encoded transactivator proteins, (v) the role of repressors in transcription and silencing, (vi) the effect of hormonal signaling, (vii) implications of LTR variability on transcription and latency, and (viii) the regulatory role of non-coding RNAs. Finally, we discuss how a better understanding of these mechanisms may allow for the development of more effective treatments against Deltaretroviruses.


Subject(s)
Gene Expression Regulation, Viral , Human T-lymphotropic virus 1/genetics , Leukemia Virus, Bovine/genetics , Virus Latency/genetics , Animals , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Human T-lymphotropic virus 1/physiology , Humans , Leukemia Virus, Bovine/physiology , Mutation , RNA, Untranslated/metabolism , Terminal Repeat Sequences/genetics , Viral Proteins/metabolism
7.
Cells ; 9(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32629888

ABSTRACT

Motor neuron degeneration and spinal cord demyelination are hallmark pathological events in Amyotrophic Lateral Sclerosis (ALS). Endogenous retrovirus-K (ERVK) expression has an established association with ALS neuropathology, with murine modeling pointing to a role for the ERVK envelope (env) gene in disease processes. Here, we describe a novel viral protein cryptically encoded within the ERVK env transcript, which resembles two distinct cysteine-rich neurotoxic proteins: conotoxin proteins found in marine snails and the Human Immunodeficiency Virus (HIV) Tat protein. Consistent with Nuclear factor-kappa B (NF-κB)-induced retrotransposon expression, the ERVK conotoxin-like protein (CTXLP) is induced by inflammatory signaling. CTXLP is found in the nucleus, impacting innate immune gene expression and NF-κB p65 activity. Using human autopsy specimens from patients with ALS, we further showcase CTXLP expression in degenerating motor cortex and spinal cord tissues, concomitant with inflammation linked pathways, including enhancement of necroptosis marker mixed lineage kinase domain-like (MLKL) protein and oligodendrocyte maturation/myelination inhibitor Nogo-A. These findings identify CTXLP as a novel ERVK protein product, which may act as an effector in ALS neuropathology.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Conotoxins/genetics , Conotoxins/metabolism , Endogenous Retroviruses/metabolism , Endogenous Retroviruses/pathogenicity , Humans , NF-kappa B/metabolism , Necroptosis/genetics , Necroptosis/physiology , Retroviridae/genetics , Retroviridae/pathogenicity
8.
Virol J ; 15(1): 165, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30359262

ABSTRACT

BACKGROUND: Limited data are available on the incidence of variations in nucleotide sequences of long terminal repeat (LTR) regions of Bovine Leukemia Virus (BLV). Consequently, the possible impact of SNPs on BLV LTR function are poorly elucidated. Thus, a detailed and representative study of full-length LTR sequences obtained from sixty-four BLV isolates from different geographical regions of Poland, Moldova, Croatia, Ukraine and Russia were analyzed for their genetic variability. METHODS: Overlap extension PCR, sequencing and Bayesian phylogenetic reconstruction of LTR sequences were performed. These analyses were followed by detailed sequence comparison, estimation of genetic heterogeneity and identification of transcription factor binding site (TFBS) modifications. RESULTS: Phylogenetic analysis of curated LTR sequences and those available in the GenBank database reflected the acknowledged env gene classification of BLV into 10 genotypes, and further clustered analysed sequences into three genotypes - G4, G7 and G8. Additional molecular studies revealed the presence of 97 point mutations distributed at 89 positions throughout all 64 LTR sequences. The highest rate of variability was noted in U3 and U5 subregions. However, the variability in regulatory sequences (VR) was assessed as lower than the variability within non-regulatory sequences (VNR) for both, U3 and U5 subregions. In contrast, VR value for R subregion, as well as for the total LTR, was higher than the VNR suggesting the existence of positive selection. Twelve unique SNPs for these LTR sequences localized in regulatory and non-regulatory elements were identified. The presence of different types of substitutions lead to the abrogation of present or to the creation of additional TFBS. CONCLUSION: This study represents the largest study of LTR genetic variability of BLV field isolates from Eastern part of Europe. Phylogenetic analysis of LTRs supports the clustering BLV variants based on their geographic origin. The SNP screening showed variations modifying LTR regulatory sequences, as well as altering TFBS. These features warrant further exploration as they could be related to proviral load and distinctive regulation of BLV transcription and replication.


Subject(s)
Enzootic Bovine Leukosis/virology , Leukemia Virus, Bovine/genetics , Polymorphism, Single Nucleotide , RNA, Viral/genetics , Terminal Repeat Sequences/genetics , Animals , Cattle , Croatia , Enzootic Bovine Leukosis/blood , Enzootic Bovine Leukosis/diagnosis , Leukocytes, Mononuclear/virology , Moldova , Phylogeny , Poland , RNA, Viral/blood , Regulatory Elements, Transcriptional , Russia , Sequence Analysis, DNA , Serology , Ukraine
9.
Front Microbiol ; 9: 1577, 2018.
Article in English | MEDLINE | ID: mdl-30072963

ABSTRACT

Background: Endogenous retrovirus-K is a group of related genomic elements descending from retroviral infections in human ancestors. HML2 is the clade of these viruses which contains the most intact provirus copies. These elements can be transcribed and translated in healthy and diseased tissues, and some of them produce active retroviral enzymes, such as protease. Retroviral gene products, including protease, contribute to illness in exogenous retroviral infections. There are ongoing efforts to test anti-retroviral regimens against endogenous retroviruses. Herein, we examine the potential activity and diversity of human endogenous retrovirus-K proteases, and their potential for impact on immunity and human disease. Results: Sequences similar to the endogenous retrovirus-K HML2 protease and reverse transcriptase were identified in the human genome, classified by phylogenetic inference and compared to Repbase reference sequences. The topologies of trees inferred from protease and reverse transcriptase sequences were similar and agreed with the classification using reference sequences. Surprisingly, only 62/480 protease sequences identified by BLAST were classified as HML2; the remainder were classified as other HML groups, with the majority (216) classified as HML3. Variation in functionally significant protease motifs was explored, and two major active site variants were identified - the DTGAD variant is common in all groups, but the DTGVD motif appears limited to HML3, HML5, and HML6. Furthermore, distinct RNA expression patterns of protease variants are seen in disease states, such as amyotrophic lateral sclerosis, breast cancer, and prostate cancer. Conclusion: Transcribed ERVK proteases exhibit a diversity which could impact immunity and inhibitor-based treatments, and these facets should be considered when designing therapeutic regimens.

10.
Front Microbiol ; 8: 1986, 2017.
Article in English | MEDLINE | ID: mdl-29075249

ABSTRACT

Despite the repetitive association of endogenous retroviruses in human disease, the mechanisms behind their pathological contributions remain to be resolved. Here we discuss how neuronal human endogenous retrovirus-K (HERV-K) expression in human immunodeficiency virus (HIV)-infected individuals is a distinct pathological aspect of HIV-associated neurological conditions, such as HIV encephalitis and HIV-associated neurocognitive disorders. Enhanced neuronal HERV-K levels were observed in the majority of HIV-infected individuals, and to a higher degree in brain tissue marked by HIV replication. Moreover, we highlight an important neuropathological overlap between amyotrophic lateral sclerosis and HIV encephalitis, that being the formation of neurotoxic TDP-43 deposits in neurons. Herein, we argue for enhanced transdisciplinary research in the field of ERV biology, using an example of how HERV-K expression has novel mechanistic and therapeutic implications for HIV neuropathology.

11.
Virol J ; 14(1): 9, 2017 01 14.
Article in English | MEDLINE | ID: mdl-28088235

ABSTRACT

Retroviruses are known to rely extensively on the expression of viral proteins from the sense proviral genomic strand. Yet, the production of regulatory retroviral proteins from antisense-encoded viral genes is gaining research attention, due to their clinical significance. This report will discuss what is known about antisense transcription in Retroviridae, and provide new information about antisense transcriptional regulation through a comparison of Human Immunodeficiency Virus (HIV), Human T-cell Lymphotrophic Virus (HTLV-1) and endogenous retrovirus-K (ERVK) long terminal repeats (LTRs). We will attempt to demonstrate that the potential for antisense transcription is more widespread within retroviruses than has been previously appreciated, with this feature being the rule, rather than the exception.


Subject(s)
Endogenous Retroviruses/genetics , Gene Expression Regulation, Viral , HIV/genetics , Human T-lymphotropic virus 1/genetics , Transcription, Genetic , Humans , Retroviridae
12.
Front Microbiol ; 7: 1941, 2016.
Article in English | MEDLINE | ID: mdl-27990140

ABSTRACT

Retroviruses create permanently integrated proviruses that exist in the host genome. Retroviral genomes encode for functionally conserved gag, pro, pol, and env regions, as well as integrase (IN), which is required for retroviral integration. IN mediates viral genome insertion through 3' end processing of the viral DNA and the strand transfer reaction. This process requires the formation of a pre-integration complex, comprised of IN, viral DNA, and cellular proteins. Viral insertion causes DNA damage, leading to the requirement of host DNA repair mechanisms. Therefore, a failure of DNA repair pathways may result in genomic instability and potentially cause host cell death. Considering the numerous human diseases associated with genomic instability, the endogenous retrovirus-K (ERVK) IN should be considered as a putative contributor to DNA damage in human cells. Future research and drug discovery should focus on ERVK IN activity and its role in human conditions, such as neurological disease and cancers.

13.
J Virol ; 90(20): 9338-49, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27512062

ABSTRACT

UNLABELLED: Thousands of endogenous retroviruses (ERV), viral fossils of ancient germ line infections, reside within the human genome. Evidence of ERV activity has been observed widely in both health and disease. While this is most often cited as a bystander effect of cell culture or disease states, it is unclear which signals control ERV transcription. Bioinformatic analysis suggests that the viral promoter of endogenous retrovirus K (ERVK) is responsive to inflammatory transcription factors. Here we show that one reason for ERVK upregulation in amyotrophic lateral sclerosis (ALS) is the presence of functional interferon-stimulated response elements (ISREs) in the viral promoter. Transcription factor overexpression assays revealed independent and synergistic upregulation of ERVK by interferon regulatory factor 1 (IRF1) and NF-κB isoforms. Tumor necrosis factor alpha (TNF-α) and LIGHT cytokine treatments of human astrocytes and neurons enhanced ERVK transcription and protein levels through IRF1 and NF-κB binding to the ISREs. We further show that in ALS brain tissue, neuronal ERVK reactivation is associated with the nuclear translocation of IRF1 and NF-κB isoforms p50 and p65. ERVK overexpression can cause motor neuron pathology in murine models. Our results implicate neuroinflammation as a key trigger of ERVK provirus reactivation in ALS. These molecular mechanisms may also extend to the pathobiology of other ERVK-associated inflammatory diseases, such as cancers, HIV infection, rheumatoid arthritis, and schizophrenia. IMPORTANCE: It has been well established that inflammatory signaling pathways in ALS converge at NF-κB to promote neuronal damage. Our findings suggest that inflammation-driven IRF1 and NF-κB activity promotes ERVK reactivation in neurons of the motor cortex in ALS. Thus, quenching ERVK activity through antiretroviral or immunomodulatory regimens may hinder virus-mediated neuropathology and improve the symptoms of ALS or other ERVK-associated diseases.


Subject(s)
Endogenous Retroviruses/genetics , Interferon Regulatory Factor-1/metabolism , Interferons/metabolism , NF-kappa B/metabolism , Response Elements/genetics , Terminal Repeat Sequences/genetics , Aged , Aged, 80 and over , Cells, Cultured , Endogenous Retroviruses/metabolism , Female , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/virology , Interferon-gamma/metabolism , Male , Middle Aged , Promoter Regions, Genetic/genetics , Signal Transduction/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
Neurobiol Dis ; 94: 226-36, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27370226

ABSTRACT

The concomitant expression of neuronal TAR DNA binding protein 43 (TDP-43) and human endogenous retrovirus-K (ERVK) is a hallmark of ALS. Since the involvement of TDP-43 in retrovirus replication remains controversial, we sought to evaluate whether TDP-43 exerts an effect on ERVK expression. In this study, TDP-43 bound the ERVK promoter in the context of inflammation or proteasome inhibition, with no effect on ERVK transcription. However, over-expression of ALS-associated aggregating forms of TDP-43, but not wild-type TDP-43, significantly enhanced ERVK viral protein accumulation. Human astrocytes and neurons further demonstrated cell-type specific differences in their ability to express and clear ERVK proteins during inflammation and proteasome inhibition. Astrocytes, but not neurons, were able to clear excess ERVK proteins through stress granule formation and autophagy. In vitro findings were validated in autopsy motor cortex tissue from patients with ALS and neuro-normal controls. We further confirmed marked enhancement of ERVK in cortical neurons of patients with ALS. Despite evidence of enhanced stress granule and autophagic response in ALS cortical neurons, these cells failed to clear excess ERVK protein accumulation. This highlights how multiple cellular pathways, in conjunction with disease-associated mutations, can converge to modulate the expression and clearance of viral gene products from genomic elements such as ERVK. In ALS, ERVK protein aggregation is a novel aspect of TDP-43 misregulation contributing towards the pathology of this neurodegenerative disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Endogenous Retroviruses/metabolism , Motor Neurons/virology , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/virology , Astrocytes/metabolism , Astrocytes/virology , Autophagy/physiology , Female , Humans , Male , Middle Aged , Motor Neurons/pathology , Mutation/genetics , Viral Proteins/metabolism
15.
Front Microbiol ; 6: 1244, 2015.
Article in English | MEDLINE | ID: mdl-26617584

ABSTRACT

Due to multiple ancestral human retroviral germ cell infections, the modern human genome is strewn with relics of these infections, termed endogenous retroviruses (ERVs). ERV expression has been silenced due to negative selective pressures and genetic phenomena such as mutations and epigenetic silencing. Nonetheless, select ERVs have retained the capacity to be damaging to their host when reawakened. Much of the current research on the ERVK Env protein strongly suggests a causal or contributive role in the pathogenesis of various cancers, autoimmune and infectious diseases. Additionally, there is a small body of research suggesting that ERVK Env has been domesticated for use in placental development, akin to the ERVW syncytin. Though much is left to ascertain, the innate immune response to ERVK Env expression has been partially characterized and appears to be due to a region located in the transmembrane domain of the Env protein. In this review, we aim to highlight ERVK Env as a biomarker for inflammatory conditions and explore its use as a future therapeutic target for cancers, HIV infection and neurological disease.

17.
Retrovirology ; 10: 16, 2013 Feb 09.
Article in English | MEDLINE | ID: mdl-23394165

ABSTRACT

Humans are symbiotic organisms; our genome is populated with a substantial number of endogenous retroviruses (ERVs), some remarkably intact, while others are remnants of their former selves. Current research indicates that not all ERVs remain silent passengers within our genomes; re-activation of ERVs is often associated with inflammatory diseases. ERVK is the most recently endogenized and transcriptionally active ERV in humans, and as such may potentially contribute to the pathology of inflammatory disease. Here, we showcase the transcriptional regulation of ERVK. Expression of ERVs is regulated in part by epigenetic mechanisms, but also depends on transcriptional regulatory elements present within retroviral long terminal repeats (LTRs). These LTRs are responsive to both viral and cellular transcription factors; and we are just beginning to appreciate the full complexity of transcription factor interaction with the viral promoter. In this review, an exploration into the inflammatory transcription factor sites within the ERVK LTR will highlight the possible mechanisms by which ERVK is induced in inflammatory diseases.


Subject(s)
Endogenous Retroviruses/genetics , Inflammation/virology , Promoter Regions, Genetic , Transcription Factors/metabolism , Humans , Inflammation/pathology , Protein Binding , Transcription, Genetic
18.
PLoS One ; 5(8): e12087, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20711470

ABSTRACT

BACKGROUND: A broad variety of natural environmental stimuli, genotypic influences and timing all contribute to expression of protective versus maladaptive immune responses and the resulting clinical outcomes in humans. The role of commonly co-segregating Toll-like receptor 4 (TLR4) non-synonymous single nucleotide polymorphisms Asp299Gly and Thr399Ile in this process remains highly controversial. Moreover, what differential impact these polymorphisms might have in at risk populations with respiratory dysfunction, such as current asthma or a history of infantile bronchiolitis, has never been examined. Here we determine the importance of these polymorphisms in modulating LPS and respiratory syncytial virus (RSV)--driven cytokine responses. We focus on both healthy children and those with clinically relevant respiratory dysfunction. METHODOLOGY: To elucidate the impact of TLR4 Asp299Gly and Thr399Ile on cytokine production, we assessed multiple immune parameters in over 200 pediatric subjects aged 7-9. Genotyping was followed by quantification of pro- and anti-inflammatory cytokine responses by fresh peripheral blood mononuclear cells upon acute exposure to LPS or RSV. PRINCIPAL FINDINGS: In contrast to early reports, neither SNP influenced immune responses evoked by LPS exposure or RSV infection, as measured by the intermediate phenotype of pro- and anti-inflammatory cytokine responses to these ubiquitous agents. There is no evidence of altered sensitivity in populations with "at risk" clinical phenotypes. CONCLUSIONS/SIGNIFICANCE: Genomic medicine seeks to inform clinical practice. Determination of the TLR4 Asp299Gly/Thr399Ile haplotype is of no clinical benefit in predicting the nature or intensity of cytokine production in children whether currently healthy or among specific at-risk groups characterized by prior infantile broncholitis or current asthma.


Subject(s)
Immunity/genetics , Lipopolysaccharides/immunology , Polymorphism, Single Nucleotide/immunology , Respiratory Syncytial Viruses/immunology , Toll-Like Receptor 4/genetics , Asthma/genetics , Asthma/immunology , Asthma/virology , Bronchiolitis/genetics , Bronchiolitis/immunology , Bronchiolitis/virology , Child , Cytokines/biosynthesis , Haplotypes/immunology , Humans
19.
Cytokine ; 52(1-2): 108-15, 2010.
Article in English | MEDLINE | ID: mdl-20627758

ABSTRACT

Inhibition of the expression and replication of human retroviruses by different families of host restriction factors has emerged as an important component of antiviral innate immunity. The term "intrinsic immunity" is used to define this specific arm of innate immunity and suggests that host restriction factors are constitutively present within infected cells. The essential role of the interferon (IFN) signaling pathways in eliciting host restriction factor gene transcription - triggered a consequence of pattern recognition receptor signaling - may be an under-recognized aspect of intrinsic immunity. This review discusses the relevance of innate IFN signaling in the induction of retroviral restriction factors, the mechanisms of action of these factors, as well as the counter-regulation of IFN response that results from the plethora of retrovirus-restriction factor interactions.


Subject(s)
Host-Pathogen Interactions/immunology , Immunity, Innate , Interferons/immunology , Retroviridae Infections/immunology , Retroviridae/immunology , Signal Transduction/immunology , Animals , Humans , Interferons/metabolism , Mice , Retroviridae/metabolism , Retroviridae Infections/metabolism
20.
J Virol ; 82(15): 7515-23, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18508904

ABSTRACT

Mammalian orthoreoviruses (reoviruses) are ubiquitous viral agents that infect cells in respiratory and enteric tracts. The frequency and nature of human cellular immunoregulatory responses against reovirus are unknown. Here we establish systems to detect and quantify reovirus-induced cytokine and chemokine recall responses using primary cultures of virus-infected peripheral blood mononuclear cells (PBMC) and two widely used reovirus serotypes, type 1 Lang (T1L) and type 3 Dearing (T3D) reexposure in vitro. In cultures from 44 healthy adults, reovirus induced exceptionally strong CD4 and CD8 T-cell-dependent gamma interferon (IFN-gamma) recall responses concomitant with intense interleukin 10 (IL-10) production. These responses were elicited independently of viral replication. Surprisingly, paired analyses of subject responses to these two common serotypes revealed that while both elicit intense Th1-dominated immunity, median T3D-driven responses were 2.2-fold weaker (P = 0.0004) than those elicited by T1L. Recall responses evoked by these viral serotypes differed markedly in their mechanism of regulation. T3D IL-10 and IFN-gamma responses were CD4 and CD8 dependent and blocked by interfering with CD86 costimulation but were CD80 independent. T1L responses were consistently CD28 and CD80/86 independent. Thus, despite extensive genetic and morphological similarities between reovirus serotypes, the nature and intensity of the human recall responses as well as the control mechanisms regulating them are clearly distinct.


Subject(s)
Immunologic Memory , Orthoreovirus, Mammalian/immunology , Adolescent , Adult , B7-1 Antigen/immunology , B7-2 Antigen/immunology , CD28 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Humans , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Leukocytes, Mononuclear/immunology , Middle Aged , T-Lymphocyte Subsets/immunology
SELECTION OF CITATIONS
SEARCH DETAIL