Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Neuroinflammation ; 20(1): 106, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37138340

ABSTRACT

TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Receptors, Tumor Necrosis Factor, Type II , Receptors, Tumor Necrosis Factor, Type I , Animals , Humans , Mice , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Inflammation , Multiple Sclerosis/metabolism , Receptors, Tumor Necrosis Factor, Type I/agonists , Receptors, Tumor Necrosis Factor, Type II/agonists , Tumor Necrosis Factor-alpha/metabolism
2.
Proc Natl Acad Sci U S A ; 113(43): 12304-12309, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27791020

ABSTRACT

Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.


Subject(s)
Inflammation/drug therapy , Nerve Degeneration/drug therapy , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Antibodies/pharmacology , Basal Nucleus of Meynert/metabolism , Basal Nucleus of Meynert/pathology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Death/drug effects , Cholinergic Neurons/drug effects , Cholinergic Neurons/pathology , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/pathology , Mice , N-Methylaspartate/genetics , Nerve Degeneration/chemically induced , Nerve Degeneration/genetics , Nerve Degeneration/immunology , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type II/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL