Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36944619

ABSTRACT

INTRODUCTION: Diabetes mellitus is associated with the development of carbonyl-oxidative stress (COS) and an increased risk of a cerebral hemorrhage. Vitamin D3 is considered an additional drug to have an impact on COS and proteolysis in the extracellular matrix. OBJECTIVE: The study aimed to evaluate the impact of D3 on the COS-markers and matrix metalloproteinases MMP2/MMP9 activity after acute intracerebral hemorrhage (ICH) in rats with experimental type 2 diabetes mellitus (Т2DM) compared to metformin (Met). METHODS: T2DM was induced in rats via the intraperitoneal injection of streptozotocin (STZ) and nicotinamide (NA), ICH - by microinjection of bacterial collagenase into the striatum. Rats were randomized into five groups: 1 - intact animals (n = 8), 2 - T2DM (n = 9); 3 - T2DM+ICH (n = 7); 4 - T2DM+ICH+Met (n = 7); 5 - T2DM+ICH+D3 (n = 7). Blood glucose, glycated hemoglobin, and oral glucose tolerance test (OGTT) were assessed using commercial kits. Advanced oxidation protein products (AOPP), protein carbonyls (PC370/430), and ischemia-modified albumin (IMA) were measured by spectrophotometry, advanced glycation end products (AGEs) by quantitative fluorescence, and matrix metalloproteinases MMP2/9 by gelatin zymography. RESULTS: D3 does not significantly affect the glucose level and OGTT in rats with T2DM+ICH. However, it reduces AOPP, PC, and AGEs, thus reducing the COS index. In contrast, the activity of proMMP9 increases after D3 administration. These effects of D3 have been reported to be stronger and sometimes opposite to those of metformin. CONCLUSION: D3 supplementation may decrease the negative consequences of a cerebral hemorrhage in T2DM by reducing COS and preventing the accumulation of COS-modified proteins in the brain by regulating the expression and activity of MMP9.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Rats , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Matrix Metalloproteinase 2/metabolism , Biomarkers/metabolism , Advanced Oxidation Protein Products/metabolism , Advanced Oxidation Protein Products/pharmacology , Cholecalciferol/pharmacology , Serum Albumin/metabolism , Serum Albumin/pharmacology , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Oxidative Stress , Glycated Hemoglobin , Metformin/pharmacology
2.
Biomed Res Int ; 2021: 6647734, 2021.
Article in English | MEDLINE | ID: mdl-34307664

ABSTRACT

Pancreatic enzyme replacement therapy (PERT) and fat predigestion are key in ensuring the optimal growth of patients with cystic fibrosis. Our study attempted to highlight differences between fat predigestion and conventional PERT on body composition of young pigs with exocrine pancreatic insufficiency (EPI). EPI and healthy pigs were fed with high-fat diet for six weeks. During the last two weeks of the study, all pigs received additional nocturnal alimentation with Peptamen AF (PAF) and were divided into three groups: H-healthy pigs receiving PAF; P-EPI pigs receiving PAF+PERT; and L-EPI pigs receiving PAF predigested with an immobilized microbial lipase. Additional nocturnal alimentation increased the body weight gain of EPI pigs with better efficacy in P pigs. Humerus length and area in pigs in groups L and P were lower than that observed in pigs in group H (p value 0.005-0.088). However, bone mineral density and strength were significantly higher in P and L as compared to that of H pigs (p value 0.0026-0.0739). The gut structure was improved in P pigs. The levels of neurospecific proteins measured in the brain were mainly affected in P and less in L pigs as compared to H pigs. The beneficial effects of the nocturnal feeding with the semielemental diet in the prevention of EPI pigs' growth/development retardation are differently modified by PERT or fat predigestion in terms of growth, bone properties, neurospecific protein distribution, and gut structure.


Subject(s)
Diet , Enzyme Replacement Therapy , Exocrine Pancreatic Insufficiency/therapy , Feeding Behavior , Lipase/therapeutic use , Pancrelipase/therapeutic use , Animals , Astrocytes/metabolism , Body Composition , Bone and Bones/pathology , Gastrointestinal Tract/pathology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Swine , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL