Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(23): 41061-41074, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36366591

ABSTRACT

X-ray wavefront measurement is an important beam diagnostic tool, especially for the diffraction-limited X-ray beam. These in situ diagnostics give a better understanding of beam imperfections, and they enable feedback for possible corrections and/or optical alignment improvements. Hartmann wavefront sensing is one of the promising techniques to perform in situ X-ray wavefront measurements. In this work, a simulation tool of the X-ray Hartmann Wavefront Sensor (HWS) is developed under the Synchrotron Radiation Workshop (SRW) framework. Using this new simulation capability, one can take advantage of the full SRW package to simulate Hartmann wavefront sensing with the beam traveling from the X-ray source to the sample through different X-ray optical components. This SRW HWS simulation tool can help to optimize the wavefront sensor parameters for a specific X-ray energy range. It can also simulate an in situ wavefront measurement experiment with a particular beamline optical layout and predict the expected results of the wavefront measurement under different beamline configurations.

2.
Rev Sci Instrum ; 92(11): 113103, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34852555

ABSTRACT

We describe the development of specific measurement protocols to improve the accuracy of surface metrology of x-ray mirrors using a dedicated commercial instrument based on wavefront sensing techniques. This instrument, SHARPeR, uses measurements from a Shack-Hartmann wavefront sensor combined with a sub-aperture stitching method to provide two-dimensional maps of the surface slope errors and can measure curved mirrors above 1 m radii. In this paper, we describe the results of measurement methods developed on a SHARPeR system installed at the European Synchrotron (ESRF) to reduce the contribution of systematic errors to measurements of strongly curved spherical and aspherical x-ray mirrors with intrinsic slope errors of the order of 100-200 nrad rms. We demonstrate how this commercial integrated instrument can provide measurements of these mirrors with comparable accuracy to those measured with a long trace profiler.

3.
Sensors (Basel) ; 21(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525501

ABSTRACT

For more than 15 years, Imagine Optic have developed Extreme Ultra Violet (EUV) and X-ray Hartmann wavefront sensors for metrology and imaging applications. These sensors are compatible with a wide range of X-ray sources: from synchrotrons, Free Electron Lasers, laser-driven betatron and plasma-based EUV lasers to High Harmonic Generation. In this paper, we first describe the principle of a Hartmann sensor and give some key parameters to design a high-performance sensor. We also present different applications from metrology (for manual or automatic alignment of optics), to soft X-ray source optimization and X-ray imaging.

4.
Sensors (Basel) ; 22(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35009674

ABSTRACT

Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light-matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in particular, single-shot amplitude, wavefront, and modal content characterization, remains a challenging task. Here, we report the single-shot amplitude, wavefront, and modal content characterization of ultrashort OV using a Shack-Hartmann wavefront sensor. These vortex beams are obtained using spiral phase plates (SPPs) that are frequently used for high-intensity applications. The reconstructed wavefronts display a helical structure compatible with the topological charge induced by the SPPs. We affirm the accuracy of the optical field reconstruction by the wavefront sensor through an excellent agreement between the numerically backpropagated and experimentally obtained intensity distribution at the waist. Consequently, through Laguerre-Gauss (LG) decomposition of the reconstructed fields, we reveal the radial and azimuthal mode composition of vortex beams under different conditions. The potential of our method is further illustrated by characterizing asymmetric Gaussian vortices carrying fractional average OAM, and a realtime topological charge measurement at a 10Hz repetition rate. These results can promote Shack-Hartmann wavefront sensing as a single-shot OV characterization tool.

5.
Sensors (Basel) ; 20(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182797

ABSTRACT

Wavefront analysis is a fast and reliable technique for the alignment and characterization of optics in the visible, but also in the extreme ultraviolet (EUV) and X-ray regions. However, the technique poses a number of challenges when used for optical systems with numerical apertures (NA) > 0.1. A high-numerical-aperture Hartmann wavefront sensor was employed at the free electron laser FLASH for the characterization of a Schwarzschild objective. These are widely used in EUV to achieve very small foci, particularly for photolithography. For this purpose, Schwarzschild objectives require highly precise alignment. The phase measurements acquired with the wavefront sensor were analyzed employing two different methods, namely, the classical calculation of centroid positions and Fourier demodulation. Results from both approaches agree in terms of wavefront maps with negligible degree of discrepancy.

6.
Opt Lett ; 45(15): 4248-4251, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32735269

ABSTRACT

We present a novel, to the best of our knowledge, Hartmann wave front sensor for extreme ultraviolet (EUV) spectral range with a numerical aperture (NA) of 0.15. The sensor has been calibrated using an EUV radiation source based on gas high harmonic generation. The calibration, together with simulation results, shows an accuracy beyond λ/39 root mean square (rms) at λ=32nm. The sensor is suitable for wave front measurement in the 10 nm to 45 nm spectral regime. This compact wave front sensor is high-vacuum compatible and designed for in situ operations, allowing wide applications for up-to-date EUV sources or high-NA EUV optics.

7.
Opt Express ; 28(13): 19242-19254, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672205

ABSTRACT

This article describes the development and testing of a novel, water-cooled, active optic mirror system (called "REAL: Resistive Element Adjustable Length") that combines cooling with applied auxiliary heating, tailored to the spatial distribution of the thermal load generated by the incident beam. This technique is theoretically capable of sub-nanometer surface figure error control even at high power density. Tests conducted in an optical metrology laboratory and at synchrotron X-ray beamlines showed the ability to maintain the mirror profile to the level needed for the next generation storage rings and FEL mirrors.

8.
Biomed Opt Express ; 11(5): 2806-2817, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32499962

ABSTRACT

Today, 3D imaging techniques are emerging, not only as a new tool in early drug discovery but also for the development of potential therapeutics to treat disease. Particular efforts are directed towards in vivo physiology to avoid perturbing the system under study. Here, we assess non-invasive 3D lensless imaging and its impact on cell behavior and analysis. We test our concept on various bio-applications and present here the first results. The microscopy platform based on in-holography provides large fields of view images (several mm2 compared to several hundred µm2) with sub-micrometer spatial resolution. 3D image reconstructions are achieved using back propagation functions post-processing.

9.
Methods Protoc ; 2(3)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31336779

ABSTRACT

High-quality in-depth imaging of three-dimensional samples remains a major challenge in modern microscopy. Selective plane illumination microscopy (SPIM) is a widely used technique that enables imaging of living tissues with subcellular resolution. However, scattering, absorption, and optical aberrations limit the depth at which useful imaging can be done. Adaptive optics (AOs) is a method capable of measuring and correcting aberrations in different kinds of fluorescence microscopes, thereby improving the performance of the optical system. We have incorporated a wavefront sensor adaptive optics scheme to SPIM (WAOSPIM) to correct aberrations induced by optically-thick samples, such as multi-cellular tumor spheroids (MCTS). Two-photon fluorescence provides us with a tool to produce a weak non-linear guide star (NGS) in any region of the field of view. The faintness of NGS; however, led us to develop a high-sensitivity Shack-Hartmann wavefront sensor (SHWS). This paper describes this newly developed SHWS and shows the correction capabilities of WAOSPIM using NGS in thick, inhomogeneous samples like MCTS. We report improvements of up to 79% for spatial frequencies corresponding to cellular and subcellular size features.

10.
Opt Express ; 27(3): 2656-2670, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732300

ABSTRACT

We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to λ/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG).

11.
Opt Express ; 22(3): 2770-81, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24663568

ABSTRACT

We present a 2D Slope measuring System based on a Stitching Shack Hartmann Optical Head (SSH-OH) aiming to perform high accuracy optical metrology for X-ray mirrors. This system was developed to perform high-accuracy automated metrology for extremely high quality optical components needed for synchrotrons or Free Electrons Lasers (FEL), EUV lithography and x-ray astronomy with slope error accuracy better than 50 nrad rms.

12.
Opt Lett ; 31(2): 199-201, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16441029

ABSTRACT

We present what we believe to be the first automatic alignment of a synchrotron beamline by the Hartmann technique. Experiments were performed, in the soft-x-ray range (E=3 keV, lambda=0.414 nm), by using a four-actuator Kirkpatrick-Baez (KB) active optic. A system imaging the KB focal spot and a soft-x-ray Hartmann wavefront sensor were used alternatively to control the KB optic. The beam corrected with the help of the imaging system was used to calibrate the wavefront sensor. With both closed loops, we focused the beam into a 6.8 microm x 9 microm FWHM focal spot.

13.
Opt Lett ; 28(17): 1534-6, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12956370

ABSTRACT

We report, for the first time to our knowledge, experimental demonstration of wave-front analysis via the Hartmann technique in the extreme ultraviolet range. The reference wave front needed to calibrate the sensor was generated by spatially filtering a focused undulator beam with 1.7- and 0.6-microm-diameter pinholes. To fully characterize the sensor, accuracy and sensitivity measurements were performed. The incident beam's wavelength was varied from 7 to 25 nm. Measurements of accuracy better than lambdaEUV/120 (0.11 nm) were obtained at lambdaEUV = 13.4 nm. The aberrations introduced by an additional thin mirror, as well as wave front of the spatially unfiltered incident beam, were also measured.

SELECTION OF CITATIONS
SEARCH DETAIL
...