Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 13(1): 62-68, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27820802

ABSTRACT

RAS GTPases are important mediators of oncogenesis in humans. However, pharmacological inhibition of RAS has proved challenging. Here we describe a functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition. We developed NS1, a synthetic binding protein (monobody) that bound with high affinity to both GTP- and GDP-bound states of H-RAS and K-RAS but not N-RAS. NS1 potently inhibited growth factor signaling and oncogenic H-RAS- and K-RAS-mediated signaling and transformation but did not block oncogenic N-RAS, BRAF or MEK1. NS1 bound the α4-ß6-α5 region of RAS, which disrupted RAS dimerization and nanoclustering and led to blocking of CRAF-BRAF heterodimerization and activation. These results establish the importance of the α4-ß6-α5 interface in RAS-mediated signaling and define a previously unrecognized site in RAS for inhibiting RAS function.


Subject(s)
Allosteric Site/drug effects , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , ras Proteins/antagonists & inhibitors , ras Proteins/chemistry , Animals , Antibodies, Monoclonal/chemistry , COS Cells , Cells, Cultured , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , ras Proteins/metabolism
2.
PLoS One ; 10(10): e0139695, 2015.
Article in English | MEDLINE | ID: mdl-26437229

ABSTRACT

We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols.


Subject(s)
Antibody Formation/physiology , Antigens/immunology , Immunoglobulin Fab Fragments/immunology , Recombinant Proteins/immunology , Cloning, Molecular , Humans , Peptide Library
3.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26121405

ABSTRACT

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibody Specificity , Chromatin/chemistry , Immunoprecipitation/methods , Proteomics/methods , Cloning, Molecular , Computational Biology/methods , Escherichia coli/metabolism , HEK293 Cells , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Mass Spectrometry/methods , Peptide Library , Proteins/chemistry , Proteome , Reproducibility of Results
4.
Proc Natl Acad Sci U S A ; 110(34): 13827-32, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23922390

ABSTRACT

Insulin-degrading enzyme (IDE) selectively degrades the monomer of amyloidogenic peptides and contributes to clearance of amyloid ß (Aß). Thus, IDE retards the progression of Alzheimer's disease. IDE possesses an enclosed catalytic chamber that engulfs and degrades its peptide substrates; however, the molecular mechanism of IDE function, including substrate access to the chamber and recognition, remains elusive. Here, we captured a unique IDE conformation by using a synthetic antibody fragment as a crystallization chaperone. An unexpected displacement of a door subdomain creates an ~18-Å opening to the chamber. This swinging-door mechanism permits the entry of short peptides into the catalytic chamber and disrupts the catalytic site within IDE door subdomain. Given the propensity of amyloidogenic peptides to convert into ß-strands for their polymerization into amyloid fibrils, they also use such ß-strands to stabilize the disrupted catalytic site resided at IDE door subdomain for their degradation by IDE. Thus, action of the swinging door allows IDE to recognize amyloidogenicity by substrate-induced stabilization of the IDE catalytic cleft. Small angle X-ray scattering (SAXS) analysis revealed that IDE exists as a mixture of closed and open states. These open states, which are distinct from the swinging door state, permit entry of larger substrates (e.g., Aß, insulin) to the chamber and are preferred in solution. Mutational studies confirmed the critical roles of the door subdomain and hinge loop joining the N- and C-terminal halves of IDE for catalysis. Together, our data provide insights into the conformational changes of IDE that govern the selective destruction of amyloidogenic peptides.


Subject(s)
Amyloidogenic Proteins/metabolism , Insulysin/chemistry , Insulysin/metabolism , Models, Molecular , Protein Conformation , Proteolysis , Catalytic Domain/genetics , Catalytic Domain/physiology , Crystallization , DNA Mutational Analysis , Escherichia coli , Humans , Immunoglobulin Fab Fragments/metabolism , Insulysin/genetics , Mutagenesis, Site-Directed , Scattering, Small Angle , Surface Plasmon Resonance
5.
J Gen Physiol ; 137(5): 441-54, 2011 May.
Article in English | MEDLINE | ID: mdl-21518833

ABSTRACT

Voltage-gated Kv2.1 potassium channels are important in the brain for determining activity-dependent excitability. Small ubiquitin-like modifier proteins (SUMOs) regulate function through reversible, enzyme-mediated conjugation to target lysine(s). Here, sumoylation of Kv2.1 in hippocampal neurons is shown to regulate firing by shifting the half-maximal activation voltage (V(1/2)) of channels up to 35 mV. Native SUMO and Kv2.1 are shown to interact within and outside channel clusters at the neuronal surface. Studies of single, heterologously expressed Kv2.1 channels show that only K470 is sumoylated. The channels have four subunits, but no more than two non-adjacent subunits carry SUMO concurrently. SUMO on one site shifts V(1/2) by 15 mV, whereas sumoylation of two sites produces a full response. Thus, the SUMO pathway regulates neuronal excitability via Kv2.1 in a direct and graded manner.


Subject(s)
Hippocampus/metabolism , Neurons/metabolism , SUMO-1 Protein/metabolism , Shab Potassium Channels/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Fluorescence Resonance Energy Transfer , Hippocampus/chemistry , Lysine/chemistry , Lysine/metabolism , Neurons/chemistry , Rats , SUMO-1 Protein/chemistry , Shab Potassium Channels/chemistry , Sumoylation
SELECTION OF CITATIONS
SEARCH DETAIL
...