Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 24(8): 3807-13, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18302440

ABSTRACT

The presence and effect of water on calcium carbonate nanoparticles used in engine additives, stabilized with a sulfonate surfactant, is investigated using small-angle neutron scattering, dynamic light scattering, Fourier transform infrared spectroscopy, and rheometry. These techniques provide complementary data that suggests the formation of a layer of water around the core of the particles ensuring continued colloidal stability yet increasing the dispersion viscosity. Through the use of small-angle neutron scattering, the dimensions of this layer have been quantified to effectively one or two water molecules in thickness. The lack of a significant electrostatic repulsion is evidence that the water layer is insufficient to cause major dissociation of surface ions.


Subject(s)
Industrial Oils , Sulfones/chemistry , Water/chemistry , Spectrophotometry, Infrared , Viscosity/drug effects , Water/pharmacology
2.
Adv Colloid Interface Sci ; 123-126: 425-31, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-16860284

ABSTRACT

The synthesis and study of oil-soluble metal carbonate colloids are of interest in the area of lubricant additives. These surfactant-stabilised nanoparticles are important components in marine and automotive engine oils. Recently introduced, environmentally driven legislation has focused on lowering of gaseous emissions by placing limits on the levels of phosphorous sulphur and ash allowed in engine oil systems. These chemical limits, coupled with improved engine performance and extended oil drainage intervals, have lead to renewed interest in the production of stable, efficient nanodetergent systems. To date, this has resulted in modification of existing surfactant structures and development of new generations of surfactants. This review covers the current state of research in the area of nanodetergents.

SELECTION OF CITATIONS
SEARCH DETAIL