Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(4): 106489, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37096039

ABSTRACT

Space-based remote sensing can make an important contribution toward monitoring greenhouse gas emissions and removals from the agriculture, forestry, and other land use (AFOLU) sector, and to understanding and addressing human-caused climate change through the UNFCCC Paris Agreement. Space agencies have begun to coordinate their efforts to identify needs, collect and harmonize available data and efforts, and plan and maintain a long-term roadmap for observations. International cooperation is crucial in developing and realizing the roadmap, and the Committee on Earth Observation Satellites (CEOS) is a key coordinating driver of this effort. Here, we first identify the data and information that will be useful to support the global stocktake (GST) of the Paris Agreement. Then, the paper explains how existing and planned space-based capabilities and products can be used and combined, particularly in the land use sector, and provides a workflow for their harmonization and contribution to greenhouse gas inventories and assessments at the national and global level.

2.
Sensors (Basel) ; 19(19)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623312

ABSTRACT

Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.

3.
Remote Sens Environ ; 143: 97-111, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24839311

ABSTRACT

Bio-optical models are based on relationships between the spectral remote sensing reflectance and optical properties of in-water constituents. The wavelength range where this information can be exploited changes depending on the water characteristics. In low chlorophyll-a waters, the blue/green region of the spectrum is more sensitive to changes in chlorophyll-a concentration, whereas the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll-a algorithms for optically complex waters. Based on a combined in situ data set of coastal and inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll-a algorithms-the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band algorithm based on red/NIR bands-with RMS error of 0.416 and 0.437 for each in log chlorophyll-a units, respectively. However, it is clear that each algorithm performs better at different chlorophyll-a ranges. When a blending approach is used based on an optical water type classification, the overall RMS error was reduced to 0.320. Bias and relative error were also reduced when evaluating the blended chlorophyll-a product compared to either of the single algorithm products. As a demonstration for ocean color applications, the algorithm blending approach was applied to MERIS imagery over Lake Erie. We also examined the use of this approach in several coastal marine environments, and examined the long-term frequency of the OWTs to MODIS-Aqua imagery over Lake Erie.

4.
Appl Opt ; 52(10): 2019-37, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23545956

ABSTRACT

Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

5.
Am J Trop Med Hyg ; 66(6): 753-8, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12224586

ABSTRACT

Each year, many residents of and visitors to endemic regions of the western United States are exposed to the vector of tick-borne relapsing fever (TBRF), an underrecognized and underreported disease. Through review of report forms and literature review, we identified 450 cases of TBRF acquired in the United States in 11 western states (and in British Columbia by a U.S. resident) from January 1977 to January 2000. Exposure sites were in forested areas, at varying elevations, in mountainous regions (Cascade, Rocky Mountain, San Bernardino, and Sierra Nevada ranges) of the United States and Canada and in limestone caves in central Texas. Only 13 counties accounted for approximately 50% of all cases. Forty percent of the cases were not residents of the state where TBRF exposure occurred, including 7% from 11 states where TBRF is not endemic. TBRF is endemic in the United States and is a disease affecting travelers, who may return home with the disease to areas where physicians are not familiar with it.


Subject(s)
Ornithodoros , Relapsing Fever/epidemiology , Tick Infestations/epidemiology , Animals , Geography , Humans , Ornithodoros/pathogenicity , Registries , Relapsing Fever/etiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...