Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675899

ABSTRACT

Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.


Subject(s)
Genome, Viral , Lumpy Skin Disease , Lumpy skin disease virus , Phylogeny , Whole Genome Sequencing , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Lumpy skin disease virus/isolation & purification , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Cattle , Africa, Central/epidemiology , Africa, Western/epidemiology , Disease Outbreaks
2.
Environ Toxicol Pharmacol ; 107: 104399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403141

ABSTRACT

ß-N-methylamino-l-alanine (BMAA) has been shown to inhibit vesicular monoamine transporter 2 (VMAT2), thereby preventing the uptake of monoaminergic neurotransmitters into platelet dense granules and synaptic vesicles. The inhibition is hypothesized to be through direct association of BMAA with hydroxyl groupꟷcontaining amino acid residues in VMAT2. This study evaluated whether BMAA-induced inhibition of VMAT2 could be prevented directly by co-incubation of BMAA with amino acids, and if this protection was specific for BMAA inhibition of VMAT2. l-tyrosine, and to a lesser extent l-serine, was able to prevent BMAA-induced VMAT2 inhibition in a concentration-dependent manner, whereas neither l-threonine nor amino acids without side chain hydroxyl groups could reduce this inhibition. Reserpine-induced VMAT2 inhibition was unaffected by any of the amino acids. These data support the hypothesized interaction between BMAA and hydroxyl groupꟷcontaining amino acids and suggests that this interaction might be leveraged to protect against the toxicity of BMAA.


Subject(s)
Amino Acids, Diamino , Amino Acids , Amino Acids/pharmacology , Vesicular Monoamine Transport Proteins , Amino Acids, Diamino/toxicity , Tyrosine , Neurotoxins/metabolism
3.
Neurosci Lett ; 821: 137593, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38103629

ABSTRACT

The first mechanism of toxicity proposed for the cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) was excitotoxicity, and this was supported by numerous in vitro studies in which overactivation of both ionotropic and metabotropic glutamate receptors was reported. However, the excitotoxicity of BMAA is weak in comparison with other known excitotoxins and on par with that of glutamate, implying that to achieve sufficient synaptic concentrations of BMAA to cause classical in vivo excitotoxicity, BMAA must either accumulate in synapses to allow persistent glutamate receptor activation or it must be released in sufficiently high concentrations into synapses to cause the overexcitation. Since it has been shown that BMAA can be readily removed from synapses, release of high concentrations of BMAA into synapses must be shown to confirm its role as an excitotoxin in in vivo systems. This study therefore sought to evaluate the uptake of BMAA into synaptic vesicles and to determine if BMAA affects the uptake of glutamate into synaptic vesicles. There was no evidence to support uptake of BMAA into glutamate-specific synaptic vesicles but there was some indication that BMAA may affect the uptake of glutamate into synaptic vesicles. The uptake of BMAA into synaptic vesicles isolated from areas other than the cerebral cortex should be investigated before definite conclusions can be drawn about the role of BMAA as an excitotoxin.


Subject(s)
Amino Acids, Diamino , Cyanobacteria Toxins , Glutamic Acid , Synaptic Vesicles , Neurotoxins/toxicity , Amino Acids, Diamino/toxicity
4.
J R Soc Interface ; 20(207): 20230344, 2023 10.
Article in English | MEDLINE | ID: mdl-37817584

ABSTRACT

The continuing advances of omic technologies mean that it is now more tangible to measure the numerous features collectively reflecting the molecular properties of a sample. When multiple omic methods are used, statistical and computational approaches can exploit these large, connected profiles. Multi-omics is the integration of different omic data sources from the same biological sample. In this review, we focus on correlation-based dimension reduction approaches for single omic datasets, followed by methods for pairs of omics datasets, before detailing further techniques for three or more omic datasets. We also briefly detail network methods when three or more omic datasets are available and which complement correlation-oriented tools. To aid readers new to this area, these are all linked to relevant R packages that can implement these procedures. Finally, we discuss scenarios of experimental design and present road maps that simplify the selection of appropriate analysis methods. This review will help researchers navigate emerging methods for multi-omics and integrating diverse omic datasets appropriately. This raises the opportunity of implementing population multi-omics with large sample sizes as omics technologies and our understanding improve.


Subject(s)
Multiomics , Research Design
5.
Toxicon ; 222: 106978, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36410456

ABSTRACT

The neurotoxic, non-proteinogenic amino acid ß-N-methylamino-l-alanine (BMAA) has been implicated in the development of neurodegenerative diseases; however, the mechanism(s) and mode(s) of toxicity remain unclear. Similarities in the neuropathology and behavioural deficits of neonatal rats exposed to either BMAA or reserpine, a known vesicular monoamine transporter 2 (VMAT2) inhibitor, suggest a similar mode of action. The aims of this study were therefore to determine if BMAA could prevent the uptake of serotonin into dense granules via inhibition of VMAT2, and, if so, the type of inhibition caused by BMAA. Exposing platelet dense granules to BMAA resulted in a concentration-dependent reduction in serotonin uptake. The inhibition of VMAT2 was non-competitive. The findings from this study support previous reports that BMAA-associated neuropathologies in a neonatal rat model may be due to VMAT2 inhibition during critical periods of neurogenesis.


Subject(s)
Amino Acids, Diamino , Vesicular Monoamine Transport Proteins , Rats , Animals , Serotonin , Amino Acids, Diamino/toxicity , Amino Acids, Diamino/metabolism , Amino Acids/metabolism , Neurotoxins/pharmacology
6.
Sci Rep ; 12(1): 19203, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357451

ABSTRACT

Plasmids facilitate horizontal gene transfer, which enables the diversification of pathogens into new anatomical and environmental niches, implying that plasmid-encoded genes can cooperate well with chromosomal genes. We hypothesise that such mobile genes are functionally different to chromosomal ones due to this ability to encode proteins performing non-essential functions like antimicrobial resistance and traverse distinct host cells. The effect of plasmid-driven gene gain on protein-protein interaction network topology is an important question in this area. Moreover, the extent to which these chromosomally- and plasmid-encoded proteins interact with proteins from their own groups compared to the levels with the other group remains unclear. Here, we examined the incidence and protein-protein interactions of all known plasmid-encoded proteins across representative specimens from most bacteria using all available plasmids. We found that plasmid-encoded genes constitute ~ 0.65% of the total number of genes per bacterial sample, and that plasmid genes are preferentially associated with different species but had limited taxonomical power beyond this. Surprisingly, plasmid-encoded proteins had both more protein-protein interactions compared to chromosomal proteins, countering the hypothesis that genes with higher mobility rates should have fewer protein-level interactions. Nonetheless, topological analysis and investigation of the protein-protein interaction networks' connectivity and change in the number of independent components demonstrated that the plasmid-encoded proteins had limited overall impact in > 96% of samples. This paper assembled extensive data on plasmid-encoded proteins, their interactions and associations with diverse bacterial specimens that is available for the community to investigate in more detail.


Subject(s)
Gene Transfer, Horizontal , Protein Interaction Maps , Protein Interaction Maps/genetics , Plasmids/genetics , Bacteria/genetics , Bacterial Proteins/genetics
7.
Genomics ; 114(6): 110509, 2022 11.
Article in English | MEDLINE | ID: mdl-36273742

ABSTRACT

The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.


Subject(s)
Bacteria
8.
Cancer Drug Resist ; 5(3): 560-576, 2022.
Article in English | MEDLINE | ID: mdl-36176752

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.

9.
Data Brief ; 42: 108143, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35496494

ABSTRACT

The data generated here in relates to the research article "CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer". A model of prostate cancer (PCa) progression to castration resistance was employed, with untreated androgen sensitive LNCaP cell line alongside two androgen deprived (bicalutamide) sublines, either 10 days (LNCaP-ADT) or 2 years (LNCaP-ABL) treatment, in addition to androgen insensitive PC3. With this PCa model, qPCR was used to examined fold change in markers linked to androgen resistance, androgen receptor (AR) and neuron specific enolase (NSE), observing an increase under androgen deprivation. In addition, the gene expression of a range of calcium channels was measured, with only the L-type Voltage gated calcium channel, CACNA1D, demonstrating an increase during androgen deprivation. With CACNA1D knockdown the channel was found not to influence the gene expression of calcium channels, ORAI1 and STIM1. The calcium channel blocker (CCB), nifedipine, was employed to determine the impact of CaV1.3 on the observed store release and calcium entry measured via Fura-2AM ratiometric dye in our outlined PCa model. In both the presence and absence of androgen deprivation, nifedipine was found to have no impact on store release induced by thapsigargin (Tg) in 0mM Ca2+ nor store operated calcium entry (SOCE) following the addition of 2mM Ca2+. However, CACNA1D siRNA knockdown was able to reduce SOCE in PC3 cells. The effect of nifedipine on CaV1.3 in PCa biology was measured through cell proliferation assay, with no observed change in the presence of CCB. While siCACNA1D reduced PC3 cell proliferation. This data can be reused to inform new studies investigating altered calcium handling in androgen resistant prostate cancer. It provides insight into the mechanism of CaV1.3 and its functional properties in altered calcium in cancer, which can be of use to researchers investigating this channel in disease. Furthermore, it could be helpful in interpreting studies investigating CCB's as a therapeutic and in the development of future drugs targeting CaV1.3.

10.
Cell Calcium ; 103: 102554, 2022 05.
Article in English | MEDLINE | ID: mdl-35193095

ABSTRACT

Androgen deprivation therapy (ADT) is the main treatment for advanced prostate cancer (PCa) but resistance results in progression to terminal castrate resistant PCa (CRPC), where there is an unmet therapeutic need. Aberrant intracellular calcium (Cai2+) is known to promote neoplastic transformation and treatment resistance. There is growing evidence that voltage gated calcium channel (VGCC) expression is increased in cancer, particularly CACNA1D/CaV1.3 in CRPC. The aim of this study was to investigate if increased CaV1.3 drives resistance to ADT and determine its associated impact on Cai2+ and cancer biology. Bioinformatic analysis revealed that CACNA1D gene expression is increased in ADT treated PCa patients. This was corroborated in both in vivo LNCaP xenograft mouse and in vitro PCa cell line models, which demonstrated a significant increase in CaV1.3 protein expression following ADT with bicalutamide. Expression was found to be of a shortened 170kDa CaV1.3 isoform associated with plasma and intracellular membranes, which failed to induce calcium influx following membrane depolarisation. Instead, under ADT CaV1.3 mediated a rise in basal cytosolic calcium and an increase in store operated calcium entry (SOCE). This mechanism was found to promote the proliferation and survival of ADT resistant CRPC cells. Overall, this study demonstrates for the first time in PCa that under ADT specific CaV1.3 isoforms promote an upregulation of SOCE which contributes to treatment resistance and CRPC biology. Thus, this novel oncochannel represents a target for therapeutic development to improve PCa patient outcomes.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Androgens/pharmacology , Androgens/therapeutic use , Animals , Calcium/metabolism , Cell Line, Tumor , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Up-Regulation
11.
PLoS Negl Trop Dis ; 15(12): e0010110, 2021 12.
Article in English | MEDLINE | ID: mdl-34968388

ABSTRACT

BACKGROUND: The kinetoplastid protozoan Leishmania tropica mainly causes cutaneous leishmaniasis in humans in the Middle East, and relapse or treatment failure after treatment are common in this area. L. tropica's digenic life cycle includes distinct stages in the vector sandfly and the mammalian host. Sexual reproduction and genetic exchange appear to occur more frequently than in other Leishmania species. Understanding these processes is complicated by chromosome instability during cell division that yields aneuploidy, recombination and heterozygosity. This combination of rare recombination and aneuploid permits may reveal signs of hypothetical parasexual mating, where diploid cells fuse to form a transient tetraploid that undergoes chromosomal recombination and gradual chromosomal loss. METHODOLOGY/PRINCIPAL FINDINGS: The genome-wide SNP diversity from 22 L. tropica isolates showed chromosome-specific runs of patchy heterozygosity and extensive chromosome copy number variation. All these isolates were collected during 2007-2017 in Sweden from patients infected in the Middle East and included isolates from a patient possessing two genetically distinct leishmaniasis infections three years apart with no evidence of re-infection. We found differing ancestries on the same chromosome (chr36) across multiple samples: matching the reference genome with few derived alleles, followed by blocks of heterozygous SNPs, and then by clusters of homozygous SNPs with specific recombination breakpoints at an inferred origin of replication. Other chromosomes had similar marked changes in heterozygosity at strand-switch regions separating polycistronic transcriptional units. CONCLUSION/SIGNIFICANCE: These large-scale intra- and inter-chromosomal changes in diversity driven by recombination and aneuploidy suggest multiple mechanisms of cell reproduction and diversification in L. tropica, including mitotic, meiotic and parasexual processes. It underpins the need for more genomic surveillance of Leishmania, to detect emerging hybrids that could spread more widely and to better understand the association between genetic variation and treatment outcome. Furthering our understanding of Leishmania genome evolution and ancestry will aid better diagnostics and treatment for cutaneous leishmaniasis caused by L.tropica in the Middle East.


Subject(s)
Genome, Protozoan , Leishmania tropica/genetics , Leishmaniasis, Cutaneous/parasitology , Afghanistan , Chromosomes/genetics , DNA Copy Number Variations , DNA, Protozoan/genetics , Genetic Variation , Humans , Iran , Leishmania tropica/classification , Leishmania tropica/isolation & purification , Phylogeny , Polymorphism, Single Nucleotide , Recombination, Genetic , Syria
12.
Neurotox Res ; 39(6): 1762-1770, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34727322

ABSTRACT

Historically, reserpine was widely used as an antihypertensive drug. However, severe motor and non-motor symptoms such as dyskinesia and depression led to the discontinuation of reserpine as a first-line treatment for hypertension. Reserpine functions by inhibiting vesicular monoamine transporter 2 (VMAT2), reducing sequestration of monoamines into synaptic vesicles. The consequent reduction in monoamines, most notably dopamine, serotonin and norepinephrine, in the central nervous system, causes well-defined symptoms such as catalepsy, hypoactivity and sedation in animals, and these motor and non-motor symptoms are well defined for reserpine treatment. However, no gross neuropathological changes in response to reserpine treatment have been reported previously in any animal model. In contrast, reducing VMAT2 expression in genetically modified VMAT2 LO mice leads to the production of ⍺-synuclein-positive aggregates and progressive nigrostriatal neuronal loss. These VMAT2 LO mice have reduced VMAT2 functionality during critical brain developmental stages and this could be the key to producing a reserpine model with matching histopathologies. The aim of this study was therefore to investigate the effect of neonatal reserpine administration on brain histology. We report here that a single dose of 5 mg kg-1 reserpine administered subcutaneously to neonatal rats on postnatal day 3 leads to widespread neuronal loss in various brain regions including the substantia nigra pars compacta, ventral tegmental area, striatum, hippocampus, locus coeruleus, amygdala and cerebral cortex, and the presence of ⍺-synuclein-positive inclusions in the substantia nigra pars compacta and the dorsal striatum within 30 days of administration.


Subject(s)
Brain/drug effects , Inclusion Bodies/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Reserpine/adverse effects , alpha-Synuclein/metabolism , Animals , Brain/pathology , Female , Inclusion Bodies/pathology , Neurons/drug effects , Neurons/pathology , Pregnancy , Rats , Rats, Sprague-Dawley , Reserpine/administration & dosage
13.
Access Microbiol ; 3(1): acmi000179, 2021.
Article in English | MEDLINE | ID: mdl-33997610

ABSTRACT

The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.

14.
Toxicol Appl Pharmacol ; 403: 115140, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32682829

ABSTRACT

With accumulating evidence that supports the role of ß-N-methylamino-l-alanine (BMAA) in neurodegeneration, it is necessary to elucidate the mechanisms and modes of BMAA toxicity so as to facilitate the search for potential preventative/therapeutic strategies. Daily supplementation with l-serine was suggested as a possible therapy to treat BMAA-induced neurotoxicity, based on the hypothesized mechanism of BMAA misincorporation into proteins for l-serine. As an alternative to misincorporation, it was hypothesized that BMAA toxicity may, in part, be due to its high affinity for associating with hydroxyl group-containing amino acids, and that a dietary excess of the hydroxyl-containing l-serine might offer protection by binding to BMAA and reducing its toxicity. Additionally, l-serine can also reduce the uptake of BMAA into human cells by competitive uptake at ASCT2, and l-phenylalanine, by competitive uptake at LAT1, and l-alanine, by competitive uptake at SNAT2, can also reduce BMAA uptake into human cells. The aim of this study was therefore to determine the protective value of l-serine, l-phenylalanine and l-alanine in reducing the effects of neonatal exposure to BMAA in a Sprague Dawley rat model. Pre-treatment with l-phenylalanine reduced the observed behavioral abnormalities and neuropathologies by 60-70% in most cases. l-serine was also effective in reducing some of the behavioral abnormalities and neuropathologies, most markedly spinal cord neuronal loss. However, the protective effect of l-serine was obfuscated by neuropathies that were observed in l-serine-treated control male rats. l-alanine had no effect in protecting against BMAA-induced neurotoxicity, suggesting that competitive amino acid uptake plays a minor role in protecting against BMAA-induced neurotoxicity.


Subject(s)
Amino Acids, Diamino/toxicity , Amino Acids/pharmacology , Central Nervous System Diseases/chemically induced , Animals , Behavior, Animal/drug effects , Cyanobacteria Toxins , Female , Maze Learning/drug effects , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley
15.
Elife ; 92020 03 25.
Article in English | MEDLINE | ID: mdl-32209228

ABSTRACT

Protozoan parasites of the Leishmania donovani complex - L. donovani and L. infantum - cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.


Subject(s)
Genetic Variation , Genome, Protozoan , Leishmania donovani/genetics , Aneuploidy , Animals , DNA Copy Number Variations , Drug Resistance/genetics , Evolution, Molecular , Heterozygote , Polymorphism, Single Nucleotide , Selection, Genetic
16.
Microb Genom ; 6(4)2020 04.
Article in English | MEDLINE | ID: mdl-32213258

ABSTRACT

Escherichia coli sequence type 131 (ST131) is a pandemic clone that is evolving rapidly with increasing levels of antimicrobial resistance. Here, we investigated an outbreak of E. coli ST131 producing extended spectrum ß-lactamases (ESBLs) in a long-term care facility (LTCF) in Ireland by combining data from this LTCF (n=69) with other Irish (n=35) and global (n=690) ST131 genomes to reconstruct the evolutionary history and understand changes in population structure and genome architecture over time. This required a combination of short- and long-read genome sequencing, de novo assembly, read mapping, ESBL gene screening, plasmid alignment and temporal phylogenetics. We found that Clade C was the most prevalent (686 out of 794 isolates, 86 %) of the three major ST131 clades circulating worldwide (A with fimH41, B with fimH22, C with fimH30), and was associated with the presence of different ESBL alleles, diverse plasmids and transposable elements. Clade C was estimated to have emerged in c. 1985 and subsequently acquired different ESBL gene variants (blaCTX-M-14 vs blaCTX-M-15). An ISEcp1-mediated transposition of the blaCTX-M-15 gene further increased the diversity within Clade C. We discovered a local clonal expansion of a rare C2 lineage (C2_8) with a chromosomal insertion of blaCTX-M-15 at the mppA gene. This was acquired from an IncFIA plasmid. The C2_8 lineage clonally expanded in the Irish LTCF from 2006, displacing the existing C1 strain (C1_10), highlighting the potential for novel ESBL-producing ST131 with a distinct genetic profile to cause outbreaks strongly associated with specific healthcare environments.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/classification , Sequence Analysis, DNA/methods , beta-Lactamases/genetics , Disease Outbreaks , Escherichia coli/genetics , Evolution, Molecular , Humans , Ireland , Long-Term Care , Molecular Epidemiology , Mutagenesis, Insertional , Phylogeny , Plasmids/genetics , beta-Lactamases/metabolism
17.
Sci Rep ; 9(1): 17394, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31758048

ABSTRACT

Escherichia coli ST131 is a major cause of infection with extensive antimicrobial resistance (AMR) facilitated by widespread beta-lactam antibiotic use. This drug pressure has driven extended-spectrum beta-lactamase (ESBL) gene acquisition and evolution in pathogens, so a clearer resolution of ST131's origin, adaptation and spread is essential. E. coli ST131's ESBL genes are typically embedded in mobile genetic elements (MGEs) that aid transfer to new plasmid or chromosomal locations, which are mobilised further by plasmid conjugation and recombination, resulting in a flexible ESBL, MGE and plasmid composition with a conserved core genome. We used population genomics to trace the evolution of AMR in ST131 more precisely by extracting all available high-quality Illumina HiSeq read libraries to investigate 4,071 globally-sourced genomes, the largest ST131 collection examined so far. We applied rigorous quality-control, genome de novo assembly and ESBL gene screening to resolve ST131's population structure across three genetically distinct Clades (A, B, C) and abundant subclades from the dominant Clade C. We reconstructed their evolutionary relationships across the core and accessory genomes using published reference genomes, long read assemblies and k-mer-based methods to contextualise pangenome diversity. The three main C subclades have co-circulated globally at relatively stable frequencies over time, suggesting attaining an equilibrium after their origin and initial rapid spread. This contrasted with their ESBL genes, which had stronger patterns across time, geography and subclade, and were located at distinct locations across the chromosomes and plasmids between isolates. Within the three C subclades, the core and accessory genome diversity levels were not correlated due to plasmid and MGE activity, unlike patterns between the three main clades, A, B and C. This population genomic study highlights the dynamic nature of the accessory genomes in ST131, suggesting that surveillance should anticipate genetically variable outbreaks with broader antibiotic resistance levels. Our findings emphasise the potential of evolutionary pangenomics to improve our understanding of AMR gene transfer, adaptation and transmission to discover accessory genome changes linked to novel subtypes.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/genetics , Evolution, Molecular , Genome, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Epidemics , Escherichia coli/classification , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Genomics , Genotype , Geography , Humans , Molecular Epidemiology , Phylogeny , Plasmids/genetics , Sequence Analysis, DNA , beta-Lactamases/genetics
18.
mSphere ; 4(3)2019 05 08.
Article in English | MEDLINE | ID: mdl-31068432

ABSTRACT

The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes blaCTX-M-14, blaCTX-M-15, and blaCTX-M-27, which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding blaCTX-M genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with blaCTX-M-15, blaCTX-M-14, and blaCTX-M-27 genes identified in three, one, and one isolates, respectively. One sample had no blaCTX-M gene. Two samples had chromosomal blaCTX-M-14 and blaCTX-M-15 genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes.


Subject(s)
Chromosomes, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Genetic Variation , Genome, Bacterial , Plasmids/genetics , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Molecular Typing , Phylogeny
19.
Mol Biol Evol ; 36(6): 1239-1253, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30913563

ABSTRACT

Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.


Subject(s)
Arabidopsis/genetics , Evolution, Molecular , Genomic Imprinting , Selection, Genetic , Arabidopsis Proteins/genetics , DNA-Directed RNA Polymerases/genetics
20.
Int J Toxicol ; 38(2): 129-134, 2019.
Article in English | MEDLINE | ID: mdl-30663459

ABSTRACT

The naturally produced, nonprotein amino acid ß- N-methylamino-l-alanine (BMAA) has been proposed as a significant contributor to sporadic neurodegenerative disease development worldwide. However, the existing hypothesized mechanisms of toxicity do not adequately explain the role of BMAA in neurodegenerative disease development. There is evidence for BMAA-induced enzyme inhibition, but the effect of BMAA on human stress response enzymes has received little attention, despite the well-described role of oxidative stress in neurodegenerative disease development. The aim of this study was therefore to investigate the effect of BMAA on human catalase activity and compare it to the known inhibitor 3-amino-1,2,4-triazole. BMAA inhibited human erythrocyte catalase in a cell-free exposure to the same extent as the known inhibitor. Based on enzyme kinetics, the inhibition appears to be noncompetitive, possibly as a result of BMAA binding in the nicotinamide adenine dinucleotide phosphate (NADPH) binding site. BMAA-induced catalase inhibition was also observed in a human cell line culture. We therefore propose that BMAA-induced enzyme inhibition, specifically catalase inhibition, is a mechanism of toxicity that may contribute to the neurotoxicity of BMAA, further supporting the role of BMAA in neurodegenerative disease development.


Subject(s)
Amino Acids, Diamino/toxicity , Catalase/antagonists & inhibitors , Catalase/metabolism , Cell Line , Cyanobacteria Toxins , Humans , Neurodegenerative Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...