Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6079, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480812

ABSTRACT

Understanding changes in material properties through external stimuli plays a key role in validating the expected performance of materials and engineering material properties in a controlled manner. Here, we introduce a fundamental protocol to deduce dehydration reactions kinetics of water confined in nanopore channels, with the cyclosilicate beryl as the scaffold of interest, using time-resolved synchrotron X-ray diffraction (SXRD), in the temperature interval of 298-1038 K. The temperature-dependent intensity ( I ) of the strongest reflection (112) was used as the crystallite variable. An estimation of an isobaric thermal crystallite coefficient, k , analogous with the isobaric thermal expansion coefficient, established the rate of relative crystallization as a function of temperature, ∂ I ∂ T . A plot of lnk and 1 T gives rise to two kinetic steps, indicating a slow dehydration stage up to ~ 700 K and a fast dehydration stage up to the investigated temperature 1038 K. The crystal structure of beryl determined up to 1038 K, in temperature increment as small as 10 K, indicates the presence of channel ions Na and Fe and a gradual decrease of water upon heating.

2.
J R Soc Interface ; 21(211): 20230632, 2024 02.
Article in English | MEDLINE | ID: mdl-38378136

ABSTRACT

Molecular assembly indices, which measure the number of unique sequential steps theoretically required to construct a three-dimensional molecule from its constituent atomic bonds, have been proposed as potential biosignatures. A central hypothesis of assembly theory is that any molecule with an assembly index ≥15 found in significant local concentrations represents an unambiguous sign of life. We show that abiotic molecule-like heteropolyanions, which assemble in aqueous solution as precursors to some mineral crystals, range in molecular assembly indices from 2 for H2CO3 or Si(OH)4 groups to as large as 21 for the most complex known molecule-like subunits in the rare minerals ewingite and ilmajokite. Therefore, values of molecular assembly indices ≥15 do not represent unambiguous biosignatures.


Subject(s)
Minerals , Water , Minerals/chemistry , Molecular Conformation
3.
PNAS Nexus ; 2(5): pgad110, 2023 May.
Article in English | MEDLINE | ID: mdl-37200799

ABSTRACT

The locations of minerals and mineral-forming environments, despite being of great scientific importance and economic interest, are often difficult to predict due to the complex nature of natural systems. In this work, we embrace the complexity and inherent "messiness" of our planet's intertwined geological, chemical, and biological systems by employing machine learning to characterize patterns embedded in the multidimensionality of mineral occurrence and associations. These patterns are a product of, and therefore offer insight into, the Earth's dynamic evolutionary history. Mineral association analysis quantifies high-dimensional multicorrelations in mineral localities across the globe, enabling the identification of previously unknown mineral occurrences, as well as mineral assemblages and their associated paragenetic modes. In this study, we have predicted (i) the previously unknown mineral inventory of the Mars analogue site, Tecopa Basin, (ii) new locations of uranium minerals, particularly those important to understanding the oxidation-hydration history of uraninite, (iii) new deposits of critical minerals, specifically rare earth element (REE)- and Li-bearing phases, and (iv) changes in mineralization and mineral associations through deep time, including a discussion of possible biases in mineralogical data and sampling; furthermore, we have (v) tested and confirmed several of these mineral occurrence predictions in nature, thereby providing ground truth of the predictive method. Mineral association analysis is a predictive method that will enhance our understanding of mineralization and mineralizing environments on Earth, across our solar system, and through deep time.

4.
Nat Commun ; 13(1): 960, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35181670

ABSTRACT

Analysis of manganese mineral occurrences and valence states demonstrate oxidation of Earth's crust through time. Changes in crustal redox state are critical to Earth's evolution, but few methods exist for evaluating spatially averaged crustal redox state through time. Manganese (Mn) is a redox-sensitive metal whose variable oxidation states and abundance in crustal minerals make it a useful tracer of crustal oxidation. We find that the average oxidation state of crustal Mn occurrences has risen in the last 1 billion years in response to atmospheric oxygenation following a 66 ± 1 million-year time lag. We interpret this lag as the average time necessary to equilibrate the shallow crust to atmospheric oxygen fugacity. This study employs large mineralogical databases to evaluate geochemical conditions through Earth's history, and we propose that this and other mineral data sets form an important class of proxies that constrain the evolving redox state of various Earth reservoirs.

5.
Geosci Data J ; 8(1): 74-89, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34158935

ABSTRACT

Minerals contain important clues to understanding the complex geologic history of Earth and other planetary bodies. Therefore, geologists have been collecting mineral samples and compiling data about these samples for centuries. These data have been used to better understand the movement of continental plates, the oxidation of Earth's atmosphere and the water regime of ancient martian landscapes. Datasets found at 'RRUFF.info/Evolution' and 'mindat.org' have documented a wealth of mineral occurrences around the world. One of the main goals in geoinformatics has been to facilitate discovery by creating and merging datasets from various scientific fields and using statistical methods and visualization tools to inspire and test hypotheses applicable to modelling Earth's past environments. To help achieve this goal, we have compiled physical, chemical and geological properties of minerals and linked them to the above-mentioned mineral occurrence datasets. As a part of the Deep Time Data Infrastructure, funded by the W.M. Keck Foundation, with significant support from the Deep Carbon Observatory (DCO) and the A.P. Sloan Foundation, GEMI ('Global Earth Mineral Inventory') was developed from the need of researchers to have all of the required mineral data visible in a single portal, connected by a robust, yet easy to understand schema. Our data legacy integrates these resources into a digestible format for exploration and analysis and has allowed researchers to gain valuable insights from mineralogical data. GEMI can be considered a network, with every node representing some feature of the datasets, for example, a node can represent geological parameters like colour, hardness or lustre. Exploring subnetworks gives the researcher a specific view of the data required for the task at hand. GEMI is accessible through the DCO Data Portal (https://dx.deepcarbon.net/11121/6200-6954-6634-8243-CC). We describe our efforts in compiling GEMI, the Data Policies for usage and sharing, and the evaluation metrics for this data legacy.

6.
Sci Adv ; 4(6): eaar3330, 2018 06.
Article in English | MEDLINE | ID: mdl-29881776

ABSTRACT

Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate.

7.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 9): 1280-1284, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27920917

ABSTRACT

The crystal structure of metarossite, ideally CaV2O6·2H2O [chemical name: calcium divanadium(V) hexa-oxide dihydrate], was first determined using precession photographs, with fixed isotropic displacement parameters and without locating the positions of the H atoms, leading to a reliability factor R = 0.11 [Kelsey & Barnes (1960 ▸). Can. Mineral.6, 448-466]. This communication reports a structure redetermination of this mineral on the basis of single-crystal X-ray diffraction data of a natural sample from the Blue Cap mine, San Juan County, Utah, USA (R1 = 0.036). Our study not only confirms the structural topology reported in the previous study, but also makes possible the refinement of all non-H atoms with anisotropic displacement parameters and all H atoms located. The metarossite structure is characterized by chains of edge-sharing [CaO8] polyhedra parallel to [100] that are themselves connected by chains of alternating [VO5] trigonal bipyramids parallel to [010]. The two H2O mol-ecules are bonded to Ca. Analysis of the displacement parameters show that the [VO5] chains librate around [010]. In addition, we measured the Raman spectrum of metarossite and compared it with IR and Raman data previously reported. Moreover, heating of metarossite led to a loss of water, which results in a transformation to the brannerite-type structure, CaV2O6, implying a possible dehydration pathway for the compounds M2+V2O6·xH2O, with M = Cu, Cd, Mg or Mn, and x = 2 or 4.

8.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 7): 959-63, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27555940

ABSTRACT

The crystal structure of ruizite, ideally Ca2Mn(3+) 2[Si4O11(OH)2](OH)2·2H2O [dicalcium dimanganese(III) tetra-silicate tetra-hydroxide dihydrate] was first determined in space group A2 with an isotropic displacement parameter model (R = 5.6%) [Hawthorne (1984 ▸). Tschermaks Mineral. Petrogr. Mitt. 33, 135-146]. A subsequent refinement in space group C2/m with anisotropic displacement parameters for non-H atoms converged with R = 8.4% [Moore et al. (1985 ▸). Am. Mineral. 70, 171-181]. The current study reports a redetermination of the ruizite structure by means of single-crystal X-ray diffraction data of a natural sample from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa. Our data (R 1 = 3.0%) confirm that the space group of ruizite is that of the first study rather than C2/m. This work improves upon the structure reported by Hawthorne (1984 ▸) in that all non-H atoms were refined with anisotropic displacement parameters and all hydrogen atoms were located. The crystal structure consists of [010] chains of edge-sharing MnO6 octa-hedra flanked by finite [Si4O11(OH)2] chains. The Ca(2+) cations are situated in the cavities of this arrangement and exhibit a coordination number of seven.

9.
Proc Natl Acad Sci U S A ; 113(26): 7071-6, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27298370

ABSTRACT

Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a "Lake Gale" catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

10.
J Geophys Res Planets ; 121(1): 75-106, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27134806

ABSTRACT

The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

11.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 3): 293-6, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-27006790

ABSTRACT

The crystal structure of brackebuschite, ideally Pb2Mn(3+)(VO4)2(OH) [dilead(II) manganese(III) vanadate(V) hydroxide], was redetermined based on single-crystal X-ray diffraction data of a natural sample from the type locality Sierra de Cordoba, Argentina. Improving on previous results, anisotropic displacement parameters for all non-H atoms were refined and the H atom located, obtaining a significant improvement of accuracy and an unambiguous hydrogen-bonding scheme. Brackebuschite belongs to the brackebuschite group of minerals with general formula A 2 M(T1O4)(T2O4)(OH, H2O), with A = Pb(2+), Ba, Ca, Sr; M = Cu(2+), Zn, Fe(2+), Fe(3+), Mn(3+), Al; T1 = As(5+), P, V(5+); and T2 = As(5+), P, V(5+), S(6+). The crystal structure of brackebuschite is based on a cubic closest-packed array of O and Pb atoms with infinite chains of edge-sharing [Mn(3+)O6] octa-hedra located about inversion centres and decorated by two unique VO4 tetra-hedra (each located on a special position 2e, site symmetry m). One type of VO4 tetra-hedra is linked with the (1) ∞[MnO4/2O2/1] chain by one common vertex, alternating with H atoms along the chain, while the other type of VO4 tetra-hedra link two adjacent octa-hedra by sharing two vertices with them and thereby participating in the formation of a three-membered Mn2V ring between the central atoms. The (1) ∞[Mn(3+)(VO4)2OH] chains run parallel to [010] and are held together by two types of irregular [PbO x ] polyhedra (x = 8, 11), both located on special position 2e (site symmetry m). The magnitude of the libration component of the O atoms of the (1) ∞[Mn(3+)(VO4)2OH] chain increases linearly with the distance from the centerline of the chain, indicating a significant twisting to and fro of the chain along [010]. The hy-droxy group bridges one Pb(2+) cation with two Mn(3+) cations and forms an almost linear hydrogen bond with a vanadate group of a neighbouring chain. The O⋯O distance of this inter-action determined from the structure refinement agrees well with Raman spectroscopic data.

12.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 2): 234-7, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25878828

ABSTRACT

The crystal structure of tetra-wickmanite, ideally Mn(2+)Sn(4+)(OH)6 [mangan-ese(II) tin(IV) hexa-hydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetra-wickmanite belongs to the octa-hedral-framework group of hydroxide-perovskite minerals, described by the general formula BB'(OH)6 with a perovskite derivative structure. The structure differs from that of an ABO3 perovskite in that the A site is empty while each O atom is bonded to an H atom. The perovskite B-type cations split into ordered B and B' sites, which are occupied by Mn(2+) and Sn(4+), respectively. Tetra-wickmanite exhibits tetra-gonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetra-wickmanite structure is characterized by a framework of alternating corner-linked [Mn(2+)(OH)6] and [Sn(4+)(OH)6] octa-hedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacant A site is in a cavity in the centre of a distorted cube formed by eight octa-hedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetra-gonal stottite, Fe(2+)Ge(4+)(OH)6.

13.
Am Mineral ; 100(4): 824-836, 2015 Apr.
Article in English | MEDLINE | ID: mdl-28798492

ABSTRACT

The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H2O inside the CheMin instrument (relative humidity <1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 Å, but largely remain open in the Cumberland sample with a basal spacing of ~13.2 Å. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in situ via aqueous alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of thousands of years. Mineralogical evidence of the persistence of benign aqueous conditions at YKB for extended periods indicates a potentially habitable environment where life could establish itself. Mediated oxidation of Fe2+ in olivine to Fe3+ in magnetite, and perhaps in smectites provided a potential energy source for organisms.

14.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 3): i16-i17, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24764934

ABSTRACT

Calcioferrite, ideally Ca4MgFe(3+) 4(PO4)6(OH)4·12H2O (tetra-calcium magnesium tetrairon(III) hexakis-phosphate tetra-hydroxide dodeca-hydrate), is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4 AB 4(PO4)6(OH)4·12H2O, where A = Mg, Fe(2+), Mn(2+) and B = Al, Fe(3+). Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al), kingsmountite (A = Fe(2+), B = Al), and zodacite (A = Mn(2+), B = Fe(3+)), usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/Al)O6 octa-hedra (site symmetries 2 and -1) sharing corners (OH) to form chains running parallel to [101]. These chains are linked together by PO4 tetra-hedra (site symmetries 2 and 1), forming [(Fe/Al)3(PO4)3(OH)2] layers stacking along [010], which are connected by (Ca/Sr)(2+) cations (site symmetry 2) and Mg(2+) cations (site symmetry 2; half-occupation). Hydrogen-bonding inter-actions involving the water mol-ecules (one of which is equally disordered over two positions) and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010).

15.
Article in English | MEDLINE | ID: mdl-24046542

ABSTRACT

The crystal structure of katayamalite, ideally KLi3Ca7Ti2(SiO3)12(OH)2 (potassium trilithium hepta-calcium dititanium dodeca-silicate di-hydroxide), was previously reported in triclinic symmetry (C-1), with isotropic displacement parameters for all atoms and without the H-atom position [Kato & Murakami (1985 ▶). Mineral. J. 12, 206-217]. The present study redetermines the katayamalite structure with monoclinic symmetry (space group C2/c) based on single-crystal X-ray diffraction data from a sample from the type locality, Iwagi Island, Ehime Prefecture, Japan, with anisotropic displacement parameters for all non-H atoms, and with the H atoms located by difference Fourier analysis. The structure of katayamalite contains a set of six-membered silicate rings inter-connected by sheets of Ca atoms on one side and by an ordered mixture of Li, Ti and K atoms on the other side, forming layers which are stacked normal to (001). From the eight different metal sites, three are located on special positions, viz. one K and one Li atom on twofold rotation axes and one Ca atom on an inversion center. The Raman spectrum of kataymalite shows a band at 3678 cm(-1), similar to that observed for hydroxyl-amphiboles, indicating no or very weak hydrogen bonding.

16.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 3): i15-i16, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23476479

ABSTRACT

Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa-hydrate], is a member of the lanthanite mineral group characterized by the general formula REE2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol-ecules.

17.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): i4-i5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424395

ABSTRACT

The bjarebyite group of minerals, characterized by the general formula BaX(2)Y(2)(PO(4))(3)(OH)(3), with X = Mg, Fe(2+) or Mn(2+), and Y = Al or Fe(3+), includes five members: bjarebyite BaMn(2+) (2)Al(2)(PO(4))(3)(OH)(3), johntomaite BaFe(2+) (2)Fe(3+) (2)(PO(4))(3)(OH)(3), kulanite BaFe(2+) (2)Al(2)(PO(4))(3)(OH)(3), penikisite BaMg(2)Al(2)(PO(4))(3)(OH)(3), and perloffite BaMn(2+) (2)Fe(3+) (2)(PO(4))(3)(OH)(3). Thus far, the crystal structures of all minerals in the group, but penikisite, have been determined. The present study reports the first structure determination of penikisite (barium dimagnesium dialuminium triphosphate trihydroxide) using single-crystal X-ray diffraction data of a crystal from the type locality, Mayo Mining District, Yukon Territory, Canada. Penikisite is isotypic with other members of the bjarebyite group with space group P2(1)/m, rather than triclinic (P1 or P-1), as previously suggested. Its structure consists of edge-shared [AlO(3)(OH)(3)] octa-hedral dimers linking via corners to form chains along [010]. These chains are decorated with PO(4) tetra-hedra (one of which has site symmetry m) and connected along [100] via edge-shared [MgO(5)(OH)] octa-hedral dimers and eleven-coordinated Ba(2+) ions (site symmetry m), forming a complex three-dimensional network. O-H⋯O hydrogen bonding provides additional linkage between chains. Microprobe analysis of the crystal used for data collection indicated that Mn substitutes for Mg at the 1.5% (apfu) level.

18.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): i6, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424396

ABSTRACT

This report presents the first crystal structure determination of the mineral schaurteite, ideally Ca(3)Ge(SO(4))(2)(OH)(6)·3H(2)O, tricalcium germanium bis-(sulfate) hexa-hydroxide trihydrate. This single-crystal X-ray diffraction study investigated a natural sample from the type locality at Tsumeb, Namibia. Schaurteite is a member of the fleischerite group of minerals, which also includes fleischerite, despujolsite, and mallestigite. The structure of schaurteite consists of slabs of Ca(O,OH,H(2)O)(8) polyhedra (site symmetry mm2) inter-leaved with a mixed layer of Ge(OH)(6) octa-hedra (-3m.) and SO(4) tetra-hedra (3m.). There are two H atoms in the asymmetric unit, both located by full-matrix refinement, and both forming O-H⋯O hydrogen bonds.

19.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): i8-i9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424398

ABSTRACT

Pirquitasite, ideally Ag(2)ZnSnS(4) (disilver zinc tin tetra-sulfide), exhibits tetra-gonal symmetry and is a member of the stannite group that has the general formula A(2)BCX(4), with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag(1.87)Cu(0.13))(Zn(0.61)Fe(0.36)Cd(0.03))SnS(4). One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)].

20.
Article in English | MEDLINE | ID: mdl-24426980

ABSTRACT

Agardite-(Y), with a refined formula of Cu(2+) 5.70(Y0.69Ca0.31)[(As0.83P0.17)O4]3(OH)6·3H2O [ideally Cu(2+) 6Y(AsO4)3(OH)6·3H2O, hexa-copper(II) yttrium tris-(arsenate) hexa-hydroxide trihydrate], belongs to the mixite mineral group which is characterized by the general formula Cu(2+) 6 A(TO4)3(OH)6·3H2O, where nine-coordinated cations in the A-site include rare earth elements along with Al, Ca, Pb, or Bi, and the T-site contains P or As. This study presents the first structure determination of agardite-(Y). It is based on the single-crystal X-ray diffraction of a natural sample from Jote West mine, Pampa Larga Mining District, Copiapo, Chile. The general structural feature of agardite-(Y) is characterized by infinite chains of edge-sharing CuO5 square pyramids (site symmetry 1) extending down the c axis, connected in the ab plane by edge-sharing YO9 polyhedra (site symmetry -6..) and corner-sharing AsO4 tetra-hedra (site symmetry m..). Hy-droxyl groups occupy each corner of the CuO5-square pyramids not shared by a neighboring As or Y atom. Each YO9 polyhedron is surrounded by three tubular channels. The walls of the channels, parallel to the c axis, are six-membered hexa-gonal rings comprised of CuO5 and AsO4 polyhedra in a 2:1 ratio, and contain free mol-ecules of lattice water.

SELECTION OF CITATIONS
SEARCH DETAIL
...