Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(1): 156-170.e7, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38141617

ABSTRACT

How do neural codes adjust to track time across a range of resolutions, from milliseconds to multi-seconds, as a function of the temporal frequency at which events occur? To address this question, we studied time-modulated cells in the striatum and the hippocampus, while macaques categorized three nested intervals within the sub-second or the supra-second range (up to 1, 2, 4, or 8 s), thereby modifying the temporal resolution needed to solve the task. Time-modulated cells carried more information for intervals with explicit timing demand, than for any other interval. The striatum, particularly the caudate, supported the most accurate temporal prediction throughout all time ranges. Strikingly, its temporal readout adjusted non-linearly to the time range, suggesting that the striatal resolution shifted from a precise millisecond to a coarse multi-second range as a function of demand. This is in line with monkey's behavioral latencies, which indicated that they tracked time until 2 s but employed a coarse categorization strategy for durations beyond. By contrast, the hippocampus discriminated only the beginning from the end of intervals, regardless of the range. We propose that the hippocampus may provide an overall poor signal marking an event's beginning, whereas the striatum optimizes neural resources to process time throughout an interval adapting to the ongoing timing necessity.


Subject(s)
Corpus Striatum , Time Perception , Neostriatum , Time , Hippocampus
3.
J Exp Psychol Anim Learn Cogn ; 49(1): 31-45, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36795421

ABSTRACT

The perception of temporal order can help infer the causal structure of the world. By investigating the perceptual signatures of audiovisual temporal order in rats, we demonstrate the importance of the protocol design for reliable order processing. Rats trained with both reinforced audiovisual trials and non-reinforced unisensory trials (two consecutive tones or flashes) learned the task surprisingly faster than rats trained with reinforced multisensory trials only. They also displayed signatures of temporal order perception, such as individual biases and sequential effects that are well described in humans, and impaired in clinical populations. We conclude that an experimental protocol requiring individuals to process all stimuli in a sequence is compulsory to ensure temporal order processing. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Time Perception , Visual Perception , Humans , Animals , Rats , Auditory Perception , Photic Stimulation , Learning , Acoustic Stimulation
4.
Behav Processes ; 203: 104762, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36257355

ABSTRACT

We analyzed, through a Pavlovian conditioning procedure in rats, the temporal pattern of behavior in appetitive and aversive conditions within subjects, and the difference in inferred temporal working memory functioning with the Gap paradigm. For both conditions, we paired a 60-s conditioned stimulus (CS: tone1 or tone2) with an unconditioned stimulus (US: shock or chocolate pellet) delivered 20s after CS onset. The analyses of mean response rate and individual-trial data were performed during Probe trials, consisting of CS alone, and trials in which gaps of different position or duration were inserted, to assess the effect of the temporal manipulation on behavior. The results showed: (1) An anticipatory peak time in the aversive condition but better accuracy in the appetitive condition, (2) constancy in the Weber fraction suggesting that the difference in peak time was under clock control, (3) a graded effect of gap parameters only in the aversive condition and (4) different gap effects between conditions when a gap was inserted early in the CS. These results highlight behavioral differences between aversive and appetitive conditions and suggest that the temporal working memory mechanism was not engaged in the same manner in each condition.


Subject(s)
Appetitive Behavior , Conditioning, Classical , Rats , Animals , Appetitive Behavior/physiology , Conditioning, Classical/physiology , Conditioning, Operant/physiology , Memory, Short-Term , Affect
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193973

ABSTRACT

A fundamental question in neuroscience is what type of internal representation leads to complex, adaptive behavior. When faced with a deadline, individuals' behavior suggests that they represent the mean and the uncertainty of an internal timer to make near-optimal, time-dependent decisions. Whether this ability relies on simple trial-and-error adjustments or whether it involves richer representations is unknown. Richer representations suggest a possibility of error monitoring, that is, the ability for an individual to assess its internal representation of the world and estimate discrepancy in the absence of external feedback. While rodents show timing behavior, whether they can represent and report temporal errors in their own produced duration on a single-trial basis is unknown. We designed a paradigm requiring rats to produce a target time interval and, subsequently, evaluate its error. Rats received a reward in a given location depending on the magnitude of their timing errors. During the test trials, rats had to choose a port corresponding to the error magnitude of their just-produced duration to receive a reward. High-choice accuracy demonstrates that rats kept track of the values of the timing variables on which they based their decision. Additionally, the rats kept a representation of the mapping between those timing values and the target value, as well as the history of the reinforcements. These findings demonstrate error-monitoring abilities in evaluating self-generated timing in rodents. Together, these findings suggest an explicit representation of produced duration and the possibility to evaluate its relation to the desired target duration.


Subject(s)
Behavior, Animal , Space Perception , Time Perception , Animals , Rats , Reinforcement, Psychology , Reward
6.
Cereb Cortex ; 32(20): 4619-4639, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35149865

ABSTRACT

Adolescence constitutes a period of vulnerability in the emergence of fear-related disorders (FRD), as a massive reorganization occurs in the amygdala-prefrontal cortex network, critical to regulate fear behavior. Genetic and environmental factors during development may predispose to the emergence of FRD at the adult age, but the underlying mechanisms are poorly understood. In the present study, we tested whether a partial knock-down of tuberous sclerosis complex 2 (Tsc2, Tuberin), a risk gene for neurodevelopmental disorders, in the basolateral amygdala (BLA) from adolescence could alter fear-network functionality and create a vulnerability ground to FRD appearance at adulthood. Using bilateral injection of a lentiviral vector expressing a miRNA against Tsc2 in the BLA of early (PN25) or late adolescent (PN50) rats, we show that alteration induced specifically from PN25 resulted in an increased c-Fos activity at adulthood in specific layers of the prelimbic cortex, a resistance to fear extinction and an overgeneralization of fear to a safe, novel stimulus. A developmental dysfunction of the amygdala could thus play a role in the vulnerability to FRD emergence at adulthood. We propose our methodology as an alternative to model the developmental vulnerability to FRD, especially in its comorbidity with TSC2-related autism syndrome.


Subject(s)
MicroRNAs , Tuberous Sclerosis Complex 2 Protein/metabolism , Tuberous Sclerosis , Amygdala , Animals , Extinction, Psychological/physiology , Fear/physiology , Prefrontal Cortex/physiology , Rats , Tuberous Sclerosis Complex 2 Protein/genetics
7.
Front Behav Neurosci ; 16: 1060587, 2022.
Article in English | MEDLINE | ID: mdl-36703723

ABSTRACT

Reinforcement learning theories postulate that prediction error, i.e., a discrepancy between the actual and expected outcomes, drives reconsolidation and new learning, inducing an updating of the initial memory. Pavlovian studies have shown that prediction error detection is a fundamental mechanism in triggering amygdala-dependent memory updating, where the temporal relationship between stimuli plays a critical role. However, in contrast to the well-established findings in aversive situations (e.g., fear conditioning), only few studies exist on prediction error in appetitive operant conditioning, and even less with regard to the role of temporal parameters. To explore if temporal prediction error in an appetitive operant paradigm could generate an updating and consequent reconsolidation and/or new learning of temporal association, we ran four experiments in adult male rats. Experiment 1 verified whether an unexpected delay in the time of reward's availability (i.e., a negative temporal prediction error) in a single session produces an updating in long-term memory of temporal expectancy in an appetitive operant conditioning. Experiment 2 showed that negative prediction errors, either due to the temporal change or through reward omission, increased in the basolateral amygdala nucleus (BLA) the activation of a protein that is critical for memory formation. Experiment 3 revealed that the presence of a protein synthesis inhibitor (anisomycin) in the BLA during the session when the reward was delayed (Error session) affected the temporal updating. Finally, Experiment 4 showed that anisomycin, when infused immediately after the Error session, interfered with the long-term memory of the temporal updating. Together, our study demonstrated an involvement of BLA after a change in temporal and reward contingencies, and in the resulting updating in long-term memory in appetitive operant conditioning.

8.
Neurobiol Learn Mem ; 182: 107446, 2021 07.
Article in English | MEDLINE | ID: mdl-33915299

ABSTRACT

Interval timing, the ability to encode and retrieve the memory of intervals from seconds to minutes, guides fundamental animal behaviors across the phylogenetic tree. In Pavlovian fear conditioning, an initially neutral stimulus (conditioned stimulus, CS) predicts the arrival of an aversive unconditioned stimulus (US, generally a mild foot-shock) at a fixed time interval. Although some studies showed that temporal relations between CS and US events are learned from the outset of conditioning, the question of the memory of time and its underlying neural network in fear conditioning is still poorly understood. The aim of the present study was to investigate the role of the dorsal striatum in timing intervals in odor fear conditioning in male rats. To assess the animal's interval timing ability in this paradigm, we used the respiratory frequency. This enabled us to detect the emergence of temporal patterns related to the odor-shock time interval from the early stage of learning, confirming that rats are able to encode the odor-shock time interval after few training trials. We carried out reversible inactivation of the dorsal striatum before the acquisition session and before a shift in the learned time interval, and measured the effects of this treatment on the temporal pattern of the respiratory rate. In addition, using intracerebral microdialysis, we monitored extracellular dopamine level in the dorsal striatum throughout odor-shock conditioning and in response to a shift of the odor-shock time interval. Contrary to our initial predictions based on the existing literature on interval timing, we found evidence suggesting that transient inactivation of the dorsal striatum may favor a more precocious buildup of the respiratory frequency's temporal pattern during the odor-shock interval in a manner that reflected the duration of the interval. Our data further suggest that the conditioning and the learning of a novel time interval were associated with a decrease in dopamine level in the dorsal striatum, but not in the nucleus accumbens. These findings prompt a reassessment of the role of the striatum and striatal dopamine in interval timing, at least when considering Pavlovian aversive conditioning.


Subject(s)
Avoidance Learning/physiology , Conditioning, Classical/physiology , Neostriatum/metabolism , Odorants , Respiratory Rate/physiology , Animals , Dopamine/metabolism , Fear , Learning , Microdialysis , Motivation/physiology , Neostriatum/physiology , Rats , Time Factors
9.
Learn Mem ; 28(2): 40-43, 2021 02.
Article in English | MEDLINE | ID: mdl-33452113

ABSTRACT

The present study evaluates the updating of long-term memory for duration. After learning a temporal discrimination associating one lever with a standard duration (4 sec) and another lever with both a shorter (1-sec) and a longer (16-sec) duration, rats underwent a single session for learning a new standard duration. The temporal generalization gradient obtained 24 h later showed a modification in long-term memory for durations longer than the standard but only when the new duration was longer than the one initially learned. The effect was confirmed for another set of durations (0.5-2-8 sec). Our study demonstrates asymmetry in updating long-term memory for time.


Subject(s)
Association Learning/physiology , Behavior, Animal/physiology , Discrimination Learning/physiology , Generalization, Psychological/physiology , Memory, Long-Term/physiology , Time Perception/physiology , Animals , Rats
10.
Sci Rep ; 10(1): 17643, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077831

ABSTRACT

In fear conditioning, where a conditioned stimulus predicts the arrival of an aversive stimulus, the animal encodes the time interval between the two stimuli. Here we monitored respiration to visualize anticipatory behavioral responses in an odor fear conditioning in rats, while recording theta (5-15 Hz) and gamma (40-80 Hz) brain oscillatory activities in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), dorsomedial striatum (DMS) and olfactory piriform cortex (PIR). We investigated the temporal patterns of respiration frequency and of theta and gamma activity power during the odor-shock interval, comparing two interval durations. We found that akin to respiration patterns, theta temporal curves were modulated by the duration of the odor-shock interval in the four recording sites, and respected scalar property in mPFC and DMS. In contrast, gamma temporal curves were modulated by the interval duration only in the mPFC, and in a manner that did not respect scalar property. This suggests a preferential role for theta rhythm in interval timing. In addition, our data bring the novel idea that the respiratory rhythm might take part in the setting of theta activity dynamics related to timing.


Subject(s)
Brain/physiology , Conditioning, Classical/physiology , Fear , Odorants , Respiratory Physiological Phenomena , Animals , Electroencephalography , Fear/physiology , Fear/psychology , Gamma Rhythm/physiology , Male , Olfactory Cortex/physiology , Prefrontal Cortex/physiology , Rats , Rats, Long-Evans , Theta Rhythm/physiology , Time Factors
11.
Behav Processes ; 180: 104244, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32941981

ABSTRACT

The present study investigated the effects of selective food devaluation on performance in the temporal bisection procedure with rats. Differential outcomes (sucrose vs. grain pellets) were associated with correct responding for a short and a long duration in order to analyze the effects of a selective duration-specific food devaluation on the temporal bisection function. Selective prefeeding produced differential changes in proportion of responding, the p(long) function, and PSE. A more consistent impact was observed when the food associated with the long anchor duration was devalued than when the short anchor duration food was devalued. The results are discussed in relation to the bias as well as a choose-short effect.


Subject(s)
Conditioning, Operant , Food , Animals , Rats , Sucrose , Time Factors
12.
Sci Rep ; 10(1): 13511, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782370

ABSTRACT

Radiotherapy (RT) is one of the most frequently used methods for cancer treatment. Despite remarkable advancements in RT techniquesthe treatment of radioresistant tumours (i.e. high-grade gliomas) is not yet satisfactory. Finding novel approaches less damaging for normal tissues is of utmost importance. This would make it possible to increase the dose applied to tumours, resulting in an improvement in the cure rate. Along this line, proton minibeam radiation therapy (pMBRT) is a novel strategy that allows the spatial modulation of the dose, leading to minimal damage to brain structures compared to a high dose (25 Gy in one fraction) of standard proton therapy (PT). The aim of the present study was to evaluate whether pMBRT also preserves important cerebral functions. Comprehensive longitudinal behavioural studies were performed in irradiated (peak dose of 57 Gy in one fraction) and control rats to evaluate the impact of pMBRT on motor function (motor coordination, muscular tonus, and locomotor activity), emotional function (anxiety, fear, motivation, and impulsivity), and cognitive function (learning, memory, temporal processing, and decision making). The evaluations, which were conducted over a period of 10 months, showed no significant motor or emotional dysfunction in pMBRT-irradiated rats compared with control animals. Concerning cognitive functions, similar performance was observed between the groups, although some slight learning delays might be present in some of the tests in the long term after irradiation. This study shows the minimal impact of pMBRT on the normal brain at the functional level.


Subject(s)
Cognition/radiation effects , Emotions/radiation effects , Motor Activity/radiation effects , Proton Therapy/adverse effects , Animals , Behavior, Animal/radiation effects , Brain/physiology , Brain/radiation effects , Male , Memory/radiation effects , Organs at Risk/physiology , Organs at Risk/radiation effects , Rats , Time Factors
13.
Cereb Cortex ; 30(10): 5257-5269, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32412084

ABSTRACT

During Pavlovian aversive conditioning, a neutral conditioned stimulus (CS) becomes predictive of the time of arrival of an aversive unconditioned stimulus (US). Using a paradigm where animals had to discriminate between a CS+ (associated with a footshock) and a CS- (never associated with a footshock), we show that, early in training, dynamics of neuronal oscillations in an amygdalo-prefronto-striatal network are modified during the CS+ in a manner related to the CS-US time interval (30 or 10 s). This is the case despite a generalized high level of freezing to both CS+ and CS-. The local field potential oscillatory power was decreased between 12 and 30 Hz in the dorsomedial striatum (DMS) and increased between 55 and 95 Hz in the prelimbic cortex (PL), while the coherence between DMS, PL, and the basolateral amygdala was increased in the 3-6 Hz frequency range up to the expected time of US arrival only for the CS+ and not for the CS-. Changing the CS-US interval from 30 to 10 s shifted these changes in activity toward the newly learned duration. The results suggest a functional role of the amygdalo-prefronto-dorsostriatal network in encoding temporal information of Pavlovian associations independently of the behavioral output.


Subject(s)
Amygdala/physiology , Conditioning, Classical/physiology , Corpus Striatum/physiology , Prefrontal Cortex/physiology , Animals , Behavior, Animal , Electroshock , Male , Neural Pathways/physiology , Rats, Sprague-Dawley , Time Factors
14.
Neurosci Biobehav Rev ; 115: 146-163, 2020 08.
Article in English | MEDLINE | ID: mdl-32439369

ABSTRACT

The processing of temporal intervals is essential to create causal maps and to predict future events so as to best adapt one's behavior. In this review, we explore the different brain activity patterns associated with processing durations and expressing temporally-adapted behavior in animals. We begin by describing succinctly some of the current models of the internal clock that can orient us in what to look for in brain activity. We then outline how durations can be decoded by single cell activity and which activity patterns could be associated with interval timing. We further point to similar patterns that have been observed at a more global level within brain areas (e.g. local field potentials) or, even, between these areas, that could represent another way of encoding duration or could constitute a necessary part for more complex temporal processing. Finally, we discuss to what extent neural data fit with internal clock models, and highlight improvements for experiments to obtain a more in-depth understanding of the brain's temporal encoding and processing.


Subject(s)
Brain , Time Perception , Animals
15.
Genes Brain Behav ; 19(5): e12633, 2020 06.
Article in English | MEDLINE | ID: mdl-31883197

ABSTRACT

Huntington's disease (HD) is a genetic neurodegenerative disorder, caused by an expanded CAG repeat in the gene encoding the huntingtin protein. At the premanifest phase, before motor symptoms occur, psychiatric and emotional disorders are observed with high prevalence in HD patients. Agitation, anxiety and irritability are often described but also depression and/or apathy, associated with a lack of emotional control. The aim of the present study was to better circumscribe and understand the emotional symptoms and assess their evolution according to the progression of the disease using a transgenic HD model, BACHD rats, at the age of 4, 12 and 18 months. To achieve this goal, we confronted animals to two types of tests: first, tests assessing anxiety like the light/dark box and the conflict test, which are situations that did not involve an obvious threat and tests assessing the reactivity to a present threat using confrontation with an unknown conspecific (social behavior test) or with an aversive stimulus (fear conditioning test). In all animals, results show an age-dependent anxiety-like behavior, particularly marked in situation requiring passive responses (light/dark box and fear conditioning tests). BACHD rats exhibited a more profound alteration than WT animals in these tests from an early stage of the disease whereas, in tasks requiring some kind of motivation (for food or for social contacts), only old BACHD rats showed high anxiety-like behavior compared to WT, may be partly due to the other symptoms' occurrence at this stage: locomotor difficulties and/or apathy.


Subject(s)
Aging/physiology , Emotional Regulation , Huntington Disease/psychology , Aging/psychology , Animals , Conditioning, Operant , Fear , Huntington Disease/genetics , Huntington Disease/physiopathology , Male , Motivation , Rats , Transgenes
16.
Front Psychol ; 10: 745, 2019.
Article in English | MEDLINE | ID: mdl-31001180

ABSTRACT

This study examined the effect of an interference task on the consolidation of duration in long-term memory. In a temporal generalization task, the participants performed a learning phase with a reference duration that either was, or was not, followed 30 min later by a 15-min interference task. They were then given a memory test, 24 h later. Using different participant groups, several reference durations were examined, from several hundred milliseconds (600 ms) to several seconds (2.5, 4, and 8 s). The results showed that the scalar timing property (i.e., precision proportional to judged duration) was preserved despite the interference task given during the memory consolidation process. However, the interference task increased the variability of time judgment and tended to produce a lengthening effect in all reference duration conditions. The modeling of individual data with parameters derived from scalar expectancy theory suggests that disrupting the memory consolidation of learned reference durations introduces noise in their representation in memory, with time being specifically distorted toward a lengthened duration.

17.
J Neurosci ; 39(17): 3277-3291, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30792271

ABSTRACT

Precise timing makes the difference between harmony and cacophony, but how the brain achieves precision during timing is unknown. In this study, human participants (7 females, 5 males) generated a time interval while being recorded with magnetoencephalography. Building on the proposal that the coupling of neural oscillations provides a temporal code for information processing in the brain, we tested whether the strength of oscillatory coupling was sensitive to self-generated temporal precision. On a per individual basis, we show the presence of alpha-beta phase-amplitude coupling whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. Our results provide evidence that active oscillatory coupling engages α oscillations in maintaining the precision of an endogenous temporal motor goal encoded in ß power; the when of self-timed actions. We propose that oscillatory coupling indexes the variance of neuronal computations, which translates into the precision of an individual's behavioral performance.SIGNIFICANCE STATEMENT Which neural mechanisms enable precise volitional timing in the brain is unknown, yet accurate and precise timing is essential in every realm of life. In this study, we build on the hypothesis that neural oscillations, and their coupling across time scales, are essential for the coding and for the transmission of information in the brain. We show the presence of alpha-beta phase-amplitude coupling (α-ß PAC) whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. α-ß PAC indexes the temporal precision with which information is represented in an individual's brain. Our results link large-scale neuronal variability on the one hand, and individuals' timing precision, on the other.


Subject(s)
Alpha Rhythm/physiology , Beta Rhythm/physiology , Brain/physiology , Motor Activity/physiology , Time Perception/physiology , Adult , Electroencephalography , Female , Humans , Magnetoencephalography , Male , Neurons/physiology , Young Adult
18.
Learn Mem ; 25(12): 629-633, 2018 12.
Article in English | MEDLINE | ID: mdl-30442771

ABSTRACT

This study demonstrates that overtraining in temporal discrimination modifies temporal stimulus control in a bisection task and produces habitual responding, as evidenced through insensitivity to food devaluation. Rats were trained or overtrained in a 2- versus 8-sec temporal discrimination task, with each duration associated with a lever (left or right) and food (grain or sucrose). Overtraining produced a leftward shift in the bisection point. Devaluation treatment induced a differential loss of responding depending on stimulus duration (short versus long) and the level of training (training versus overtraining). The relationships between timing behavior and habitual behavior are discussed.


Subject(s)
Discrimination Learning , Discrimination, Psychological , Practice, Psychological , Time Perception , Animals , Habits , Rats , Time Factors
19.
Front Integr Neurosci ; 12: 14, 2018.
Article in English | MEDLINE | ID: mdl-29867384

ABSTRACT

Huntington disease (HD) is an autosomal dominantly inherited, progressive neurodegenerative disorder which is accompanied by executive dysfunctions and emotional alteration. The aim of the present study was to assess the impact of emotion/stress on on-going highly demanding cognitive tasks, i.e., temporal processing, as a function of age in BACHD rats (a "full length" model of HD). Middle-aged (4-6 months) and old (10-12 months) rats were first trained on a 2 vs. 8-s temporal discrimination task, and then exposed to a series of bisection tests under normal and stressful (10 mild unpredictable foot-shocks) conditions. The animals were then trained on a peak interval task, in which reinforced fixed-interval (FI) 30-s trials were randomly intermixed with non-reinforced probe trials. After training, the effect of stress upon time perception was again assessed. Sensitivity to foot-shocks was also assessed independently. The results show effects of both age and genotype, with largely greater effects in old BACHD animals. The older BACHD animals had impaired learning in both tasks, but reached equivalent levels of performance as WT animals at the end of training in the temporal discrimination task, while remaining impaired in the peak interval task. Whereas sensitivity to foot-shock did not differ between BACHD and WT rats, delivery of foot-shocks during the test sessions had a disruptive impact on temporal behavior in WT animals, an effect which increased with age. In contrast, BACHD rats, independent of age, did not show any significant disruption under stress. In conclusion, BACHD rats showed a disruption in temporal learning in late symptomatic animals. Age-related modification in stress-induced impairment of temporal control of behavior was also observed, an effect which was greatly reduced in BACHD animals, thus confirming previous results suggesting reduced emotional reactivity in HD animals. The results suggest a staggered onset in cognitive and emotional alterations in HD, with emotional alteration being the earliest, possibly related to different time courses of degeneration in cortico-striatal and amygdala circuits.

20.
PLoS Comput Biol ; 13(12): e1005893, 2017 12.
Article in English | MEDLINE | ID: mdl-29227989

ABSTRACT

We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model "goodness of fit" via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling.


Subject(s)
Brain/physiology , Models, Neurological , Action Potentials , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...