Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Exp Mol Pathol ; 137: 104895, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703553

ABSTRACT

Lipidome perturbation occurring during meta-inflammation is associated to left ventricle (LV) remodeling though the activation of the NLRP3 inflammasome, a key regulator of chronic inflammation in obesity-related disorders. Little is known about phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as DAMP-induced NLRP3 inflammasome. Our study is aimed to evaluate if a systemic reduction of PC/PE molar ratio can affect NLRP3 plasma levels in cardiovascular disease (CVD) patients with insulin resistance (IR) risk. Forty patients from IRCCS Policlinico San Donato were enrolled, and their blood samples were drawn before heart surgery. LV geometry measurements were evaluated by echocardiography and clinical data associated to IR risk were collected. PC and PE were quantified by ESI-MS/MS. Circulating NLRP3 was quantified by an ELISA assay. Our results have shown that CVD patients with IR risk presented systemic lipid impairment of PC and PE species and their ratio in plasma was inversely associated to NLRP3 levels. Interestingly, CVD patients with IR risk presented LV changes directly associated to increased levels of NLRP3 and a decrease in PC/PE ratio in plasma, highlighting the systemic effect of meta-inflammation in cardiac response. In summary, PC and PE can be considered bioactive mediators associated to both the NLRP3 and LV changes in CVD patients with IR risk.

2.
Antioxidants (Basel) ; 12(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36978832

ABSTRACT

Advanced glycation end products (AGEs) are aging products. In chronic kidney disease (CKD), AGEs accumulate due to the increased production, reduced excretion, and the imbalance between oxidant/antioxidant capacities. CKD is therefore a model of aging. The aim of this review is to summarize the present knowledge of AGEs in CKD onset and progression, also focusing on CKD-related disorders (cardiovascular diseases, sarcopenia, and nutritional imbalance) and CKD mortality. The role of AGEs as etiopathogenetic molecules, as well as potential markers of disease progression and/or therapeutic targets, will be discussed.

3.
Eur J Prev Cardiol ; 30(8): 680-693, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36799940

ABSTRACT

AIMS: Human epicardial adipose tissue (EAT) plays a crucial role in the development and progression of coronary artery disease, atrial fibrillation, and heart failure. Microscopically, EAT is composed of adipocytes, nerve tissues, inflammatory, stromovascular, and immune cells. Epicardial adipose tissue is a white adipose tissue, albeit it also has brown fat-like or beige fat-like features. No muscle fascia divides EAT and myocardium; this allows a direct interaction and crosstalk between the epicardial fat and the myocardium. Thus, it might be a therapeutic target for pharmaceutical compounds acting on G-protein-coupled receptors, such as those for glucose-dependent insulinotropic polypeptide (GIP), glucagon (GCG), and glucagon-like peptide-1 (GLP-1), whose selective stimulation with innovative drugs has demonstrated beneficial cardiovascular effects. The precise mechanism of these novel drugs and their tissue and cellular target(s) need to be better understood. We evaluate whether human EAT expresses GIP, GCG, and GLP-1 receptors and whether their presence is related to EAT transcriptome. We also investigated protein expression and cell-type localization specifically for GIP receptor (GIPR) and glucagon receptor (GCGR). METHODS AND RESULTS: Epicardial adipose tissue samples were collected from 33 patients affected by cardiovascular diseases undergoing open heart surgery (90.9% males, age 67.2 ± 10.5 years mean ± SD). Microarray and immunohistochemistry analyses were performed. Microarray analysis showed that GIPR and GCGR messenger ribonucleic acids (mRNAs) are expressed in EAT, beyond confirming the previously found GLP-1 [3776 ± 1377 arbitrary unit (A.U.), 17.77 ± 14.91 A.U., and 3.41 ± 2.27 A.U., respectively]. The immunohistochemical analysis consistently indicates that GIPR and GCGR are expressed in EAT, mainly in macrophages, isolated, and in crown-like structures. In contrast, only some mature adipocytes of different sizes showed cytoplasmic immunostaining, similar to endothelial cells and pericytes in the capillaries and pre-capillary vascular structures. Notably, EAT GIPR is statistically associated with the low expression of genes involved in free fatty acid (FFA) oxidation and transport and those promoting FFA biosynthesis and adipogenesis (P < 0.01). Epicardial adipose tissue GCGR, in turn, is related to genes involved in FFA transport, mitochondrial fatty acid oxidation, and white-to-brown adipocyte differentiation, in addition to genes involved in the reduction of fatty acid biosynthesis and adipogenesis (P < 0.01). CONCLUSIONS: Having reported the expression of the GLP-1 receptor previously, here, we showed that GIPR and GCGR similarly present at mRNA and protein levels in human EAT, particularly in macrophages and partially adipocytes, suggesting these G-protein-coupled receptors as pharmacological targets on the ongoing innovative drugs, which seem cardiometabolically healthy well beyond their effects on glucose and body weight.


Human epicardial adipose tissue (EAT) is a unique and multifunctional fat compartment of the heart. Microscopically, EAT is composed of adipocytes, nerve tissues, inflammatory, stromovascular, and immune cells. Epicardial adipose tissue is a white adipose tissue, albeit it also has brown fat-like or beige fat-like features. No muscle fascia divides EAT and myocardium; this allows a direct interaction and crosstalk between the epicardial fat and the myocardium. Due to its distinctive transcriptome and functional proximity to the heart, EAT can play a key role in the development and progression of coronary artery disease, atrial fibrillation, and heart failure. Clinically, EAT, given its rapid metabolism and simple measurability, can be considered a novel therapeutic target, owing to its responsiveness to drugs with pleiotropic and clear beneficial cardiovascular effects such as the glucagon-like peptide-1 receptor (GLP-1R) agonists.Human EAT is found to express the genes encoding the receptors of glucose-dependent insulinotropic polypeptide receptor (GIPR), glucagon receptor (GCGR), and GLP-1. The immunohistochemistry indicates that GIP and GCG receptor proteins are present in EAT samples. Epicardial adipose tissue GIPR is inversely associated with genes involved in free fatty acid (FFA) oxidation and transport and with genes promoting FFA biosynthesis and adipogenesis. Epicardial adipose tissue GCGR is correlated with genes promoting FFA transport and activation for mitochondrial beta-oxidation and white-to-brown adipocyte differentiation and with genes reducing FFA biosynthesis and adipogenesis.As the myocardium relies mostly on FFAs as fuel and is in direct contiguity with EAT, these findings may have a great importance for the modulation of the myocardial activity and performance. Given the emerging use and cardiovascular effects of GLP-1R agonists, dual GIPR/GLP-1R agonists, and GLP-1R/GIPR/GCGR triagonists, we believe that pharmacologically targeting and potentially modulating organ-specific fat depots through G-protein­coupled receptors may produce beneficial cardiovascular and metabolic effects.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Glucagon , Male , Humans , Middle Aged , Aged , Female , Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Endothelial Cells/metabolism , Adipose Tissue/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 1 , Receptors, G-Protein-Coupled/genetics , Glucose , Fatty Acids
4.
Cells ; 12(3)2023 01 29.
Article in English | MEDLINE | ID: mdl-36766780

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is characterized by an overproduction and accumulation of advanced glycation end products (AGEs). Because AGEs may play a role in the development of malnutrition and sarcopenia, two essential components of frailty, we evaluated whether they may also contribute to the onset of frailty in CKD patients. METHODS: We performed a cross-sectional analysis of 117 patients. AGEs were quantified using a fluorescence spectrophotometer and soluble receptor for AGE (sRAGE) isoforms by ELISA. We defined frailty according to the frailty phenotype (FP) proposed by Fried. RESULTS: The average age of patients was 80 ± 11 years, 70% were male, and the mean eGFR was 25 + 11 mL/min/1.73m2. Frailty was diagnosed in 51 patients, and 40 patients were classified as pre-frail. AGEs and RAGE isoforms seem not to correlate with overall frailty. Instead, AGEs were associated with specific frailty domains, inversely associated with BMI (R = -0.22, p = 0.016) and directly associated with gait test time (R = 0.17, p = 0.049). AGEs were also associated with involuntary weight loss (OR 1.84 p = 0.027), independent of age and sex. CONCLUSIONS: AGEs are associated with some pivotal components of the frailty phenotype, although they are not associated with frailty overall.


Subject(s)
Frailty , Renal Insufficiency, Chronic , Male , Female , Humans , Receptor for Advanced Glycation End Products/genetics , Glycation End Products, Advanced , Cohort Studies , Cross-Sectional Studies , Protein Isoforms
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768322

ABSTRACT

Obesity is an epidemic condition linked to cardiovascular disease severity and mortality. Fat localization and type represent cardiovascular risk estimators. Importantly, visceral fat secretes adipokines known to promote low-grade inflammation that, in turn, modulate its secretome and cardiac metabolism. In this regard, IL-33 regulates the functions of various immune cells through ST2 binding and-following its role as an immune sensor to infection and stress-is involved in the pro-fibrotic remodeling of the myocardium. Here we further investigated the IL-33/ST2 effects on cardiac remodeling in obesity, focusing on molecular pathways linking adipose-derived IL-33 to the development of fibrosis or hypertrophy. We analyzed the Zucker Fatty rat model, and we developed in vitro models to mimic the adipose and myocardial relationship. We demonstrated a dysregulation of IL-33/ST2 signaling in both adipose and cardiac tissue, where they affected Epac proteins and myocardial gene expression, linked to pro-fibrotic signatures. In Zucker rats, pro-fibrotic effects were counteracted by ghrelin-induced IL-33 secretion, whose release influenced transcription factor expression and ST2 isoforms balance regulation. Finally, the effect of IL-33 signaling is dependent on several factors, such as cell types' origin and the balancing of ST2 isoforms. Noteworthy, it is reasonable to state that considering IL-33 to have a unique protective role should be considered over-simplistic.


Subject(s)
Interleukin-33 , Obesity , Receptors, Interleukin-1 , Ventricular Remodeling , Animals , Rats , Cardiomegaly/genetics , Cardiomegaly/metabolism , Disease Models, Animal , Fibrosis/genetics , Fibrosis/metabolism , Ghrelin/genetics , Ghrelin/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Myocardium/metabolism , Obesity/complications , Obesity/genetics , Obesity/metabolism , Rats, Zucker , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology
6.
Antioxidants (Basel) ; 11(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35883745

ABSTRACT

BACKGROUND: in patients with chronic kidney disease (CKD), the inflammatory and pro-oxidant milieu may contribute to malnutrition development. In this study, we investigated the relationship between inflammation, advanced glycation end-products (AGEs), and their receptors (RAGEs) with malnutrition in CKD patients. METHODS: we evaluated 117 patients. AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer, soluble RAGEs isoforms, and inflammatory interleukins by ELISA. Malnutrition was assessed by a malnutrition inflammation score. RESULTS: mean age was 80 ± +11 years, eGFR was 25 ± +11 mL/min/1.73 m2 and BMI was 28 ± 5 Kg/m2. Malnourished individuals were older, had lower estimated protein intake (nPCR 0.65 ± 0.2 vs. 0.8 ± 0.2 vs. 0.8 ± 0.3, p = 0.01), higher C reactive protein (CRP 0.6 ± 1 vs. 0.6 ± 0.7 vs. 0.17 ± 0.13, p = 0.02) and tumor necrosis factor α (TNF α 14.7 ± 8.7 vs. 15.6 ± 8 vs. 11.8 ± 5.8, p = 0.029). Malnourished patients had higher sRAGE (2813 ± 1477 vs. 2158 ± 1236 vs. 2314 ± 1115, p = 0.035) and esRAGE (648 [408-1049] vs. 476 [355-680] vs. 545 [380-730] p = 0.033). In the multivariate analysis, only sRAGE maintained its association with malnutrition (p = 0.02) independently of aging and inflammation. CONCLUSIONS: in CKD patients, RAGEs isoforms, but not AGEs, are associated with malnutrition, irrespective of systemic inflammation, aging, and renal function.

7.
Biomedicines ; 10(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35884793

ABSTRACT

BACKGROUND: In patients with chronic kidney disease (CKD), there is an overproduction and accumulation of advanced glycation end-products (AGEs). Since AGEs may have detrimental effects on muscular trophism and performance, we evaluated whether they may contribute to the onset of sarcopenia in CKD patients. METHODS: We enrolled 117 patients. The AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer and soluble receptor for AGE (sRAGE) isoforms by ELISA. As for the sarcopenia definition, we used the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria. RESULTS: The average age was 80 ± 11 years, 70% were males, and the mean eGFR was 25 + 11 mL/min/1.73 m2. Sarcopenia was diagnosed in 26 patients (with a prevalence of 22%). The sarcopenic patients had higher levels of circulating AGEs (3405 ± 951 vs. 2912 ± 722 A.U., p = 0.005). AGEs were higher in subjects with a lower midarm muscle circumference (MAMC) (3322 ± 919 vs. 2883 ± 700 A.U., respectively; p = 0.005) and were directly correlated with the gait test time (r = 0.180, p = 0.049). The total sRAGE and its different isoforms (esRAGE and cRAGE) did not differ in patients with or without sarcopenia. CONCLUSIONS: In older CKD patients, AGEs, but not sRAGE, are associated with the presence of sarcopenia. Therefore, AGEs may contribute to the complex pathophysiology leading to the development of sarcopenia in CKD patients.

8.
Int J Mol Sci ; 23(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35409168

ABSTRACT

The etiopathogenesis of obesity-related chronic kidney disease (CKD) is still scarcely understood. To this aim, we assessed the effect of high-fat diet (HF) on molecular pathways leading to organ damage, steatosis, and fibrosis. Six-week-old male C57BL/6N mice were fed HF diet or normal chow for 20 weeks. Kidneys were collected for genomic, proteomic, histological studies, and lipid quantification. The main findings were as follows: (1) HF diet activated specific pathways leading to fibrosis and increased fatty acid metabolism; (2) HF diet promoted a metabolic shift of lipid metabolism from peroxisomes to mitochondria; (3) no signs of lipid accumulation and/or fibrosis were observed, histologically; (4) the early signs of kidney damage seemed to be related to changes in membrane protein expression; (5) the proto-oncogene MYC was one of the upstream transcriptional regulators of changes occurring in protein expression. These results demonstrated the potential usefulness of specific selected molecules as early markers of renal injury in HF, while histomorphological changes become visible later in obesity-related CDK. The integration of these information with data from biological fluids could help the identification of biomarkers useful for the early detection and prevention of tissue damage in clinical practice.


Subject(s)
Diet, High-Fat , Renal Insufficiency, Chronic , Animals , Biomarkers/metabolism , Diet, High-Fat/adverse effects , Fibrosis , Kidney/metabolism , Lipids , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Proteome/metabolism , Proteomics , Renal Insufficiency, Chronic/metabolism
9.
Antioxidants (Basel) ; 10(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34943097

ABSTRACT

Patients with chronic kidney disease (CKD) are affected by enhanced oxidative stress and chronic inflammation, and these factors may contribute to increase advanced glycation end-products (AGEs). In this study we quantified AGEs and soluble receptors for AGE (sRAGE) isoforms and evaluated the association between their variations and eGFR at baseline and after 12 months. We evaluated 64 patients. AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer, and sRAGE by ELISA. Median age was 81 years, male patients accounted for 70%, 63% were diabetic, and eGFR was 27 ± 10 mL/min/1.73 m2. At follow up, sRAGE isoforms underwent a significant decrement (1679 [1393;2038] vs. 1442 [1117;2102], p < 0.0001), while AGEs/sRAGE ratios were increased (1.77 ± 0.92 vs. 2.24 ± 1.34, p = 0.004). Although AGEs and AGEs/sRAGE ratios were inversely related with eGFR, their basal values as well their variations did not show a significant association with eGFR changes. In a cohort of patients with a stable clinical condition at 1 year follow-up, AGEs/sRAGE was associated with renal function. The lack of association with eGFR suggests that other factors can influence its increase. In conclusion, AGEs/sRAGE can be an additional risk factor for CKD progression over a longer time, but its role as a prognostic tool needs further investigation.

10.
J Clin Med ; 10(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34682915

ABSTRACT

Glycation and glycosylation are non-enzymatic and enzymatic reactions, respectively, of glucose, glucose metabolites, and other reducing sugars with different substrates, such as proteins, lipids, and nucleic acids. Increased availability of glucose is a recognized risk factor for the onset and progression of diabetes-mellitus-associated disorders, among which cardiovascular diseases have a great impact on patient mortality. Both advanced glycation end products, the result of non-enzymatic glycation of substrates, and O-linked-N-Acetylglucosaminylation, a glycosylation reaction that is controlled by O-N-AcetylGlucosamine (GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), have been shown to play a role in cardiovascular remodeling. In this review, we aim (1) to summarize the most recent data regarding the role of glycation and O-linked-N-Acetylglucosaminylation as glucose-related pathogenetic factors and disease markers in cardiovascular remodeling, and (2) to discuss potential common mechanisms linking these pathways to the dysregulation and/or loss of function of different biomolecules involved in this field.

11.
Clinicoecon Outcomes Res ; 13: 453-464, 2021.
Article in English | MEDLINE | ID: mdl-34079308

ABSTRACT

PURPOSE: To investigate the glycated albumin (GA) introduction implications, as an add-on strategy to traditional glycemic control (Hb1Ac and fasting plasma glucose - FPG) instruments, considering insulin-naïve individuals with type 2 diabetes mellitus (T2DM), treated with oral therapies. METHODS: A Health Technology Assessment was conducted in Italy, as a multi-dimensional approach useful to validate any innovative technology. The HTA dimensions, derived from the EUnetHTA Core Model, were deployed by means of literature evidence, health economics tools and qualitative questionnaires, filled-in by 15 professionals. RESULTS: Literature stated that the GA introduction could lead to a higher number of individuals achieving therapeutic success after 3 months of therapy (97.0% vs 71.6% without GA). From an economic point of view, considering a projection of 1,955,447 T2DM insulin-naïve individuals, potentially treated with oral therapy, GA introduction would imply fewer individuals requiring a therapy switch (-89.44%), with a 1.06% in costs reduction, on annual basis, thus being also the preferable solution from a cost-effectiveness perspective (cost-effectiveness value: 237.74 vs 325.53). According to experts opinions, lower perceptions on GA emerged with regard to equity aspects (0.13 vs 0.72, p-value>0.05), whereas it would improve both individuals (2.17 vs 1.33, p-value=0.000) and caregivers quality of life (1.50 vs 0.83, p-value=0.000). Even if in the short term, GA required additional investments in training courses (-0.80 vs 0.10, p-value = 0.036), in the long run, GA could become the preferable technology (0.30 vs 0.01, p-value=0.018) from an organisational perspective. CONCLUSION: Adding GA to traditional glycaemic control instruments could improve the clinical pathway of individuals with T2DM, leading to economic and organisational advantages for both hospitals and National Healthcare Systems.

12.
Biomedicines ; 9(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918767

ABSTRACT

Sarcopenia is common in chronic kidney disease (CKD), and it is independently associated with morbidity and mortality. Advanced glycation end products (AGE) are mainly known as aging products. In CKD, AGE accumulate due to increased production and reduced kidney excretion. The imbalance between oxidant/antioxidant capacities in CKD patients is one of the main factors leading to AGE synthesis. AGE can, in turn, promote CKD progression and CKD-related complications by increasing reactive oxygen species generation, inducing inflammation, and promoting fibrosis. All these derangements can further increase AGE and uremic toxin accumulation and promote loss of muscle mass and function. Since the link between AGE and sarcopenia in CKD is far from being fully understood, we revised hereby the data supporting the potential contribution of AGE as mediators of oxidative stress in the pathogenesis of sarcopenia. Understanding how AGE and oxidative stress impact the onset of sarcopenia in CKD may help to identify new potential markers of disease progression and/or therapeutic targets.

13.
Biomedicines ; 8(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371369

ABSTRACT

Advanced glycation end-products (AGE) can promote chronic kidney disease (CKD) progression and CKD-related morbidities. The soluble receptor for AGE (sRAGE) is a potential biomarker of inflammation and oxidative stress. Here, we explored the role of AGE, glycated albumin, sRAGE and its different forms, cRAGE and esRAGE, as prognostic factors for mortality in 111 advanced CKD patients. The median follow-up time was 39 months. AGE were quantified by fluorescence, sRAGE and its forms by ELISA. Malnutrition was screened by the Malnutrition Inflammation Score (MIS). The Cox proportional hazards regression model was used to assess the association of variables with all-cause mortality. Mean levels of sRAGE, esRAGE and cRAGE were 2318 ± 1224, 649 ± 454 and 1669 ± 901 pg/mL. The mean value of cRAGE/esRAGE was 2.82 ± 0.96. AGE were 3026 ± 766 AU and MIS 6.0 ± 4.7. eGFR correlated negatively with AGE, sRAGE, esRAGE and cRAGE, but not with cRAGE/esRAGE. Twenty-eight patients died. No difference was observed between diabetic and non-diabetic patients. Starting dialysis was not associated with enhanced risk of death. AGE, esRAGE and cRAGE/esRAGE were independently associated with all-cause mortality. AGE, esRAGE and cRAGE/esRAGE may help to stratify overall mortality risk. Implementing the clinical evaluation of CKD patients by quantifying these biomarkers can help to improve patient outcomes.

14.
J Transl Med ; 18(1): 458, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33272305

ABSTRACT

BACKGROUND AND AIMS: Magnesium is a fundamental cation that regulates neuronal transmission, protein synthesis, energy metabolism. Magnesium deficiency mostly affects nervous and cardiovascular systems determining weakness, tremors, seizure and arrhythmias. This condition retains also a role in memory function and neuronal plasticity. Importantly magnesium deficiency could remain latent and asymptomatic resulting a risk factor for cardiovascular disease. In this sense we aim to determine magnesium status in patient presenting cognitive impairment of vascular origin. METHODS: 21 healthy subjects and 27 patients presenting vascular cognitive impairment were included in this study. Both plasma and intraerythrocitary magnesium level were measured to detect magnesium deficiency and cognitive performance was evaluated trough Mini Mental State Evaluation (MMSE). RESULTS: Here we showed that patients presenting vascular cognitive impairment present intraerythrocitary magnesium level lower than age-matched healthy subjects. To note their plasma magnesium resulted within reference limit. CONCLUSION: We suggest that intracellular magnesium laboratory measurement is needed to detect occult magnesium deficiency in population at risk. Magnesium supplementation could represent an adjuvant for healthy aging in high risk population.


Subject(s)
Cognitive Dysfunction , Magnesium Deficiency , Vascular Diseases , Cognitive Dysfunction/complications , Erythrocytes , Humans , Magnesium Deficiency/complications , Pilot Projects
15.
Int J Endocrinol ; 2020: 1809150, 2020.
Article in English | MEDLINE | ID: mdl-33204260

ABSTRACT

BACKGROUND: Aromatase inhibitors in women with breast cancer have been associated with cancer treatment-induced bone loss (CTIBL), increased fracture risk, and impairment of glucose metabolism. Denosumab (Dmab), a monoclonal antibody against RANKL, which is a key regulator of the osteoclast activity, is effective as an antiresorptive agent in the treatment of CTIBL. Since RANKL/RANK pathway may contribute to the pathogenesis of glucometabolic disorders, it has been suggested that Dmab may improve glucose homeostasis. Our pilot study evaluated the effect of a single administration of 60 mg Dmab on glucose metabolism in a cohort of women with breast cancer treated with aromatase inhibitors. METHODS: Fifteen postmenopausal nondiabetic women were prospectively enrolled. Oral glucose tolerance test (OGTT) and metabolic parameters, including FGF21, were assessed at baseline and one month after Dmab injection. Midterm glucose control was evaluated by measuring glycated haemoglobin (HbA1c) levels 5 months after Dmab. RESULTS: Parameters of glucose metabolism were not different one month after Dmab but circulating FGF21 levels significantly decreased (128.5 ± 46.8 versus 100.2 ± 48.8 pg/mL; p=0.016). Considering patients with insulin resistance at baseline (HOMA-IR > 2.5 and Matsuda Index < 2.5; n = 5), reduced mean fasting insulin levels (16.3 ± 4.9 versus 13.5 ± 3.5 mcU/mL; p=0.029) and increased insulin sensitivity index QUICKI (0.317 ± 0.013 versus 0.327 ± 0.009; p=0.025) were found. Nonetheless, HbA1c increased 5 months after Dmab (36.0 ± 2.3 versus 39.6 ± 3.1 mmol/mol; p=0.01). CONCLUSIONS: Although RANKL blockade induced a short-term positive effect on insulin sensitivity, particularly in insulin-resistant patients, a benefit on long-term glucose metabolism was not evident. In conclusion, Dmab is safe for glucose metabolism in aromatase inhibitor-treated women with breast cancer.

16.
J Clin Med ; 9(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238596

ABSTRACT

The receptor for advanced glycation end products (RAGE), a well-known player of diabetes mellitus (DM)-related morbidities, was supposed to be involved in coronavirus disease-19 (COVID-19), but no data exist about COVID-19, DM, and the soluble RAGE (sRAGE) forms. We quantified total sRAGE and its forms, the endogenously secretory esRAGE and the membrane-cleaved cRAGE, in COVID-19 patients with and without DM and in healthy individuals to explore how COVID-19 may affect these molecules and their potential role as biomarkers. Circulating sRAGE and esRAGE were quantified by enzyme-linked-immunosorbent assays. cRAGE was obtained by subtracting esRAGE from total sRAGE. sRAGE, esRAGE, cRAGE, and the cRAGE/esRAGE ratio did not differ between DM and non-DM patients and had the same trend when compared to healthy individuals. Levels of total sRAGE, cRAGE, and cRAGE/esRAGE ratio were upregulated, while esRAGE was downregulated. The lack of difference between DM and non-DM COVID-19 patients in the levels of sRAGE and its forms supports the hypothesis that in COVID-19 the RAGE system is modulated regardless of glycemic control. Identifying how sRAGE and its forms associate to COVID-19 prognosis and the potential of RAGE as a therapeutic target to control inflammatory burden seem of relevance to help treatment of COVID-19.

17.
Int J Mol Sci ; 21(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759639

ABSTRACT

Osteopontin (OPN) is a multifaceted matricellular protein, with well-recognized roles in both the physiological and pathological processes in the body. OPN is expressed in the main organs and cell types, in which it induces different biological actions. During physiological conditioning, OPN acts as both an intracellular protein and soluble excreted cytokine, regulating tissue remodeling and immune-infiltrate in adipose tissue the heart and the kidney. In contrast, the increased expression of OPN has been correlated with the severity of the cardiovascular and renal outcomes associated with obesity. Indeed, OPN expression is at the "cross roads" of visceral fat extension, cardiovascular diseases (CVDs) and renal disorders, in which OPN orchestrates the molecular interactions, leading to chronic low-grade inflammation. The common factor associated with OPN overexpression in adipose, cardiac and renal tissues seems attributable to the concomitant increase in visceral fat size and the increase in infiltrated OPN+ macrophages. This review underlines the current knowledge on the molecular interactions between obesity and the cardiac-renal disorders ruled by OPN.


Subject(s)
Heart Diseases/genetics , Kidney Diseases/genetics , Myocardium/metabolism , Osteopontin/genetics , Adipose Tissue/metabolism , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Inflammation/genetics , Inflammation/pathology , Insulin Resistance/genetics , Intra-Abdominal Fat/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Myocardium/pathology , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Osteopontin/metabolism
18.
Mediators Inflamm ; 2020: 1348913, 2020.
Article in English | MEDLINE | ID: mdl-32565719

ABSTRACT

Epicardial adipose tissue (EAT) has the unique property to release mediators that nourish the heart in healthy conditions, an effect that becomes detrimental when volume expands and proinflammatory cytokines start to be produced. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a proinflammatory mediator involved in atherosclerosis, is also produced by visceral fat. Due to the correlation of inflammation with PCSK9 and EAT enlargement, we evaluated whether PCSK9 was expressed in EAT and associated with EAT inflammation and volume. EAT samples were isolated during surgery. EAT thickness was measured by echocardiography. A microarray was used to explore EAT transcriptoma. The PCSK9 protein levels were measured by Western Blot in EAT and ELISA in plasma. PCSK9 was expressed at both the gene and protein levels in EAT. We found a positive association with EAT thickness and local proinflammatory mediators, in particular, chemokines for monocytes and lymphocytes. No association was found with the circulating PCSK9 level. The expression of PCSK9 in EAT argues that PCSK9 is part of the EAT secretome and EAT inflammation is associated with local PCSK9 expression, regardless of circulating PCSK9 levels. Whether reducing EAT inflammation or PCSK9 local levels may have beneficial effects on EAT metabolism and cardiovascular risk needs further investigations.


Subject(s)
Adipose Tissue/metabolism , Inflammation/metabolism , Pericardium/metabolism , Proprotein Convertase 9/metabolism , Aged , Anthropometry , Body Mass Index , Case-Control Studies , Chemokines/metabolism , Coronary Artery Disease/complications , Female , Heart Valve Diseases/complications , Humans , Lymphocytes/metabolism , Male , Middle Aged , Monocytes/metabolism , Protein Array Analysis , Risk
19.
J Clin Med ; 9(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041319

ABSTRACT

A decline in metabolic health may take place before observing any alteration in the levels of the traditional metabolic markers. New indicators of metabolic derangement are therefore compelling. Irisin is a myokine with important metabolic functions. The role of irisin as a metabolic biomarker in humans has not been fully established yet. We quantified plasma irisin and esRAGE in 106 apparently healthy individuals and we performed a cluster analysis to evaluate their associations with metabolic profile. Plasma levels of various traditional markers of metabolic risk (i.e., glucose and lipid levels) were all within the ranges of normality. We identified two clusters of individuals. Compared to cluster 2, individuals in cluster 1 had higher irisin levels, a metabolic profile shifted toward the limits of the reference ranges and lower esRAGE levels. The traditional metabolic blood tests seem not to be enough to identify a metabolic decline early. Irisin increase and esRAGE decrease may reflect a metabolic derangement at the beginning of its development. The role of these molecules as early biomarkers of decline of metabolic health seems an interesting topic to be further explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...