Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Eur J Surg Oncol ; : 108403, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38760237

ABSTRACT

Gynaecological cancers (GCs) comprise a group of cancers that originate in the female reproductive organs. Each GC is unique, with different signs and symptoms, risk factors and therapeutic strategies. Worldwide, the majority of GCs are still associated with high mortality rates, especially ovarian, due to difficulty in early detection. Despite numerous studies on the underlying pathophysiology, research in the field of GCs poses unique scientific and technological challenges. These challenges require a concerted multi- and inter-disciplinary effort by the clinical, scientific and research communities to accelerate the advancement of prognostic, diagnostic, and therapeutic approaches. Sarcopenia is a multifactorial disease which leads to the systemic loss of skeletal muscle mass and function. It can be caused by malignancies, as well as due to malnutrition, physical inactivity, ageing and neuromuscular, inflammatory, and/or endocrine diseases. Anorexia and systemic inflammation can shift the metabolic balance of patients with cancer cachexia towards catabolism of skeletal muscle, and hence sarcopenia. Therefore, sarcopenia is considered as an indicator of poor general health status, as well as the possible indicator of advanced cancer. There is a growing body of evidence showing the prognostic significance of sarcopenia in various cancers, including GCs. This review will outline the clinical importance of sarcopenia in patients with GCs.

2.
Cells ; 12(10)2023 05 17.
Article in English | MEDLINE | ID: mdl-37408248

ABSTRACT

The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs.


Subject(s)
F-Box Proteins , Genital Neoplasms, Female , Female , Humans , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Genital Neoplasms, Female/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
3.
Int J Mol Sci ; 23(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806469

ABSTRACT

Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.


Subject(s)
Gynecology , Neoplasms, Radiation-Induced , Space Flight , Weightlessness , Astronauts , Female , Humans , Male , Weightlessness/adverse effects
4.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35563557

ABSTRACT

Cervical cancer (CC) is the fourth most common type of gynecological malignancy affecting females worldwide. Most CC cases are linked to infection with high-risk human papillomaviruses (HPV). There has been a significant decrease in the incidence and death rate of CC due to effective cervical Pap smear screening and administration of vaccines. However, this is not equally available throughout different societies. The prognosis of patients with advanced or recurrent CC is particularly poor, with a one-year relative survival rate of a maximum of 20%. Increasing evidence suggests that cancer stem cells (CSCs) may play an important role in CC tumorigenesis, metastasis, relapse, and chemo/radio-resistance, thus representing potential targets for a better therapeutic outcome. CSCs are a small subpopulation of tumor cells with self-renewing ability, which can differentiate into heterogeneous tumor cell types, thus creating a progeny of cells constituting the bulk of tumors. Since cervical CSCs (CCSC) are difficult to identify, this has led to the search for different markers (e.g., ABCG2, ITGA6 (CD49f), PROM1 (CD133), KRT17 (CK17), MSI1, POU5F1 (OCT4), and SOX2). Promising therapeutic strategies targeting CSC-signaling pathways and the CSC niche are currently under development. Here, we provide an overview of CC and CCSCs, describing the phenotypes of CCSCs and the potential of targeting CCSCs in the management of CC.


Subject(s)
Uterine Cervical Neoplasms , Cell Transformation, Neoplastic/metabolism , Female , Humans , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Uterine Cervical Neoplasms/pathology
5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360598

ABSTRACT

Gynecological cancers (GCs) are currently among the major threats to female health. Moreover, there are different histologic subtypes of these cancers, which are defined as 'rare' due to an annual incidence of <6 per 100,000 women. The majority of these tend to be associated with a poor prognosis. Long non-coding RNAs (lncRNAs) play a critical role in the normal development of organisms as well as in tumorigenesis. LncRNAs can be classified into tumor suppressor genes or oncogenes, depending on their function within the cellular context and the signaling pathways in which they are involved. These regulatory RNAs are potential therapeutic targets for cancer due to their tissue and tumor specificity. However, there still needs to be a deeper understanding of the mechanisms by which lncRNAs are involved in the regulation of numerous biological functions in humans, both in normal health and disease. The lncRNA Mortal Obligate RNA Transcript (MORT; alias ZNF667-AS1) has been identified as a tumor-related lncRNA. ZNF667-AS1 gene, located in the human chromosome region 19q13.43, has been shown to be silenced by DNA hypermethylation in several cancers. In this review, we report on the biological functions of ZNF667-AS1 from recent studies and describe the regulatory functions of ZNF667-AS1 in human disease, including cancer. Furthermore, we discuss the emerging insights into the potential role of ZNF667-AS1 as a biomarker and novel therapeutic target in cancer, including GCs (ovarian, cervical, and endometrial cancers).


Subject(s)
Genital Neoplasms, Female/pathology , RNA, Long Noncoding/genetics , Animals , Female , Genital Neoplasms, Female/genetics , Humans
6.
J Cell Physiol ; 235(2): 629-637, 2020 02.
Article in English | MEDLINE | ID: mdl-31313842

ABSTRACT

The present study shows that nuclear factor erythroid 2-related factor 2 (NRF2) and miR-29b-1-5p are two opposite forces which could regulate the fate of MDA-MB-231 cells, the most studied triple-negative breast cancer (TNBC) cell line. We show that NRF2 activation stimulates cell growth and markedly reduces reactive oxygen species (ROS) generation, whereas miR-29b-1-5p overexpression increases ROS generation and reduces cell proliferation. Moreover, NRF2 downregulates miR-29b-1-5p expression, whereas miR-29b-1-5p overexpression decreases p-AKT and p-NRF2. Furthermore, miR-29b-1-5p overexpression induces both inhibition of DNA N-methyltransferases (DNMT1, DNMT3A, and DNMT3B) expression and re-expression of HIN1, RASSF1A and CCND2. Conversely, NRF2 activation induces opposite effects. We also show that parthenolide, a naturally occurring small molecule, induces the expression of miR-29b-1-5p which could suppress NRF2 activation via AKT inhibition. Overall, this study uncovers a novel NRF2/miR-29b-1-5p/AKT regulatory loop that can regulate the fate (life/death) of MDA-MB-231 cells and suggests this loop as therapeutic target for TNBC.


Subject(s)
MicroRNAs/genetics , NF-E2-Related Factor 2/genetics , Proto-Oncogene Proteins c-akt/genetics , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin D2/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , DNA Methyltransferase 3A , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Reactive Oxygen Species/metabolism , Sesquiterpenes/pharmacology , Signal Transduction/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , DNA Methyltransferase 3B
7.
J Cell Physiol ; 234(10): 18432-18447, 2019 08.
Article in English | MEDLINE | ID: mdl-30912136

ABSTRACT

Triple-negative breast cancer (TNBC) is a form of BC characterized by high aggressiveness and therapy resistance probably determined by cancer stem cells. MCL1 is an antiapoptotic Bcl-2 family member that could limit the efficacy of anticancer agents as recombinant human tumor necrosis factor related apoptosis-inducing ligand (rh-TRAIL). Here, we investigated MCL1 expression in TNBC tissues and cells. We found MCL1 differentially expressed (upregulated or downregulated) in TNBC tissues. Furthermore, in comparison to the human mammary epithelial cells, we found that MDA-MB-231 cells show similar messenger RNA levels but higher MCL1 protein levels, whereas it resulted downregulated in MDA-MB-436 and BT-20 cells. We evaluated the effects of rh-TRAIL and A-1210477, a selective MCL1 inhibitor, on cell viability and growth of MDA-MB-231 cells. We demonstrated that the drug combination reduced the cell growth and activated the apoptotic pathway. Similar effects were observed on three-dimensional cultures and tertiary mammospheres of MDA-MB-231 cells. In MDA-MB-231 cells, after MCL1 silencing, rh-TRAIL confined the cell population in the sub-G0/G1 phase and induced a drop in the mitochondrial transmembrane potential. To understand the molecular mechanism by which the loss of MCL1 function sensitizes the MDA-MB-231 cells to rh-TRAIL, we analyzed by real-time reverse transcription polymerase chain reaction, the expression of genes related to apoptosis, stemness, cell cycle, and those involved in epigenetic regulation. Interestingly, among the upregulated genes through MCL1 silencing or inhibition, there was TNFRSF10A (DR4). Moreover, MCL1 inhibition increased DR4 protein levels and its cell surface expression. Finally, we demonstrated MCL1-DR4 interaction and dissociation of this complex after A-1210477 treatment. Overall, our findings highlight the potential MCL1-roles in MDA-MB-231 cells and suggest that MCL1 targeting could be an effective strategy to overcome TNBC's rh-TRAIL resistance.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Recombinant Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Humans , Indoles/pharmacology , Membrane Potential, Mitochondrial/drug effects , Sulfonamides/pharmacology
8.
Oncotarget ; 8(17): 28939-28958, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28423652

ABSTRACT

MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR-29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b-1 ectopic overexpression decreased TNBC cell growth, self-renewal, migration, invasiveness and paclitaxel resistance repressing WNT/ßcatenin and AKT signaling pathways and stemness regulators. We identified SPINDLIN1 (SPIN1) among predicted miR-29b-1-5p targets. Consistently, SPIN1 was overexpressed in most TNBC tissues and cell lines and negatively correlated with miR-29b-1-5p. Target site inhibition showed that SPIN1 seems to be directly controlled by miR-29b-1-5p. Silencing SPIN1 mirrored the effects triggered by miR-29b-1 overexpression, whereas SPIN1 rescue by SPIN1miScript protector, determined the reversal of the molecular effects produced by the mimic-miR-29b-1-5p. Overall, we show that miR-29b-1 deregulation impacts on multiple oncogenic features of TNBC cells and their renewal potential, acting, at least partly, through SPIN1, and suggest that both these factors should be evaluated as new possible therapeutic targets against TNBC.


Subject(s)
Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Microtubule-Associated Proteins/genetics , Phosphoproteins/genetics , Signal Transduction/genetics , Triple Negative Breast Neoplasms/genetics , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Breast/pathology , Carcinogenesis/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Drug Resistance, Neoplasm/genetics , Female , Humans , MicroRNAs/genetics , Microtubule-Associated Proteins/metabolism , Nanog Homeobox Protein/metabolism , Neoplasm Invasiveness/genetics , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phosphoproteins/metabolism , SOXB1 Transcription Factors/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
9.
Cell Death Discov ; 3: 17078, 2017.
Article in English | MEDLINE | ID: mdl-29354292

ABSTRACT

Triple-negative breast cancer is a group of aggressive cancers with poor prognosis owing to chemoresistance, recurrence and metastasis. New strategies are required that could reduce chemoresistance and increases the effectiveness of chemotherapy. The results presented in this paper, showing that parthenolide (PN) prevents drug resistance in MDA-MB231 cells, represent a contribution to one of these possible strategies. MDA-MB231 cells, the most studied line of TNBC cells, were submitted to selection treatment with mitoxantrone (Mitox) and doxorubicin (DOX). The presence of resistant cells was confirmed through the measurement of the resistance index. Cells submitted to this treatment exhibited a remarkable increment of NF-E2-related factor 2 (Nrf2) level, which was accompanied by upregulation of catalase, MnSOD, HSP70, Bcl-2 and P-glycoprotein. Moreover, as a consequence of overexpression of Nrf2 and correlated proteins, drug-treated cells exhibited a much lower ability than parental cells to generate ROS in response to a suitable stimulation. The addition of PN (2.0 µM) to Mitox and DOX, over the total selection time, prevented both the induction of resistance and the overexpression of Nrf2 and correlated proteins, whereas the cells showed a good ability to generate ROS in response to adequate stimulation. To demonstrate that Nrf2 exerted a crucial role in the induction of resistance, the cells were transiently transfected with a specific small interfering RNA for Nrf2. Similarly to the effects induced by PN, downregulation of Nrf2 was accompanied by reductions in the levels of catalase, MnSOD, HSP70 and Bcl-2, prevention of chemoresistance and increased ability to generate ROS under stimulation. In conclusion, our results show that PN inhibited the development of the resistance toward Mitox and DOX, and suggest that these effects were correlated with the prevention of the overexpression of Nrf2 and its target proteins, which occurred in the cells submitted to drug treatment.

10.
Int J Oncol ; 48(6): 2339-48, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27082853

ABSTRACT

Triple-negative breast cancer (TNBC) is a clinically aggressive form of breast cancer that is unresponsive to endocrine agents or trastuzumab. TNBC accounts for ~10-20% of all breast cancer cases and represents the form with the poorest prognosis. Patients with TNBC are at higher risk of early recurrence, mainly in the lungs, brain and soft tissue, therefore, there is an urgent need for new therapies. The present study was carried out in MDA-MB-231 cells, where we assessed the role of caspase-8 (casp-8), a critical effector of death receptors, also involved in non­apoptotic functions. Analysis of casp-8 mRNA and protein levels indicated that they were up-regulated with respect to the normal human mammalian epithelial cells. We demonstrated that silencing of casp-8 by small interfering-RNA, strongly decreased MDA-MB-231 cell growth by delaying G0/G1- to S-phase transition and increasing p21, p27 and hypo-phosphorylated/active form of pRb levels. Surprisingly, casp-8-knockdown, also potently increased both the migratory and metastatic capacity of MDA-MB­231 cells, as shown by both wound healing and Matrigel assay, and by the expression of a number of related-genes and/or proteins such as VEGFA, C-MYC, CTNNB1, HMGA2, CXCR4, KLF4, VERSICAN V1 and MMP2. Among these, KLF4, a transcriptional factor with a dual role (activator and repressor), seemed to play critical roles. We suggest that in MDA-MB­231 cells, the endogenous expression of casp-8 might keep the cells perpetually cycling through downregulation of KLF4, the subsequent lowering of p21 and p27, and the inactivation by hyperphosphorylation of pRb. Simultaneously, by lowering the expression of some migratory and invasive genes, casp-8 might restrain the metastatic ability of the cells. Overall, our findings showed that, in MDA-MB-231 cells, casp-8 might play some unusual roles which should be better explored, in order to understand whether it might be identified as a molecular therapeutic target.


Subject(s)
Caspase 8/metabolism , Triple Negative Breast Neoplasms/enzymology , Caspase 8/genetics , Cell Cycle/physiology , Cell Line, Tumor , Down-Regulation , Female , G1 Phase/physiology , Humans , Kruppel-Like Factor 4 , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Resting Phase, Cell Cycle/physiology , Transfection , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
11.
J Cell Physiol ; 231(8): 1832-41, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26679758

ABSTRACT

Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 and p27 CDK-inhibitors. Let-7d also decreased sarcosphere-and-colony forming ability, two features associated with self-renewing, and it reduced the expression of stemness genes, including Oct3/4, Sox2, Nanog, Lin28B, and HMGA2. Moreover, let-7d induced mesenchymal-to-epithelial-transition, as shown by both N-Cadherin-E-cadherin-switch and decrease in vimentin. Surprisingly, such switch was accompanied by enhanced migratory/invasive capacities, with a strong increase in MMP9, CXCR4 and VersicanV1. Let-7d- overexpression also reduced cell sensitivity to apoptosis induced by both serum-starvation and various chemotherapy drugs, concomitant with decrease in caspase-3 and increase in BCL2 expression. Our data suggest that let-7d in 3AB-OS-CSCs could induce plastic-transitions from CSCs-to-non-CSCs and vice-versa. To our knowledge this is the first study to comprehensively examine the expression and functions of let-7d in OS-CSCs. By showing that let-7d has both tumor suppressor and oncogenic functions in this context, our findings suggest that, before prospecting new therapeutic strategies based on let-7d modulation, it is urgent to better define its multiple functions. J. Cell. Physiol. 231: 1832-1841, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Bone Neoplasms/metabolism , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Osteosarcoma/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Self Renewal , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/pathology , Phenotype , Signal Transduction , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection
12.
Int J Oncol ; 45(5): 2013-23, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25174983

ABSTRACT

Osteosarcoma (OS) is the most common type of bone cancer, with a peak incidence in the early childhood. Emerging evidence suggests that treatments targeting cancer stem cells (CSCs) within a tumor can halt cancer and improve patient survival. MicroRNAs (miRNAs) have been implicated in the maintenance of the CSC phenotype, thus, identification of CSC-related miRNAs would provide information for a better understanding of CSCs. Downregulation of miRNA-29 family members (miR-29a/b/c; miR­29s) was observed in human OS, however, little is known about the functions of miR-29s in human OS CSCs. Previously, during the characterization of 3AB-OS cells, a CSC line selected from human OS MG63 cells, we showed a potent downregulation of miR-29b. In this study, after stable transfection of 3AB-OS cells with miR-29b-1, we investigated the role of miR-29b-1 in regulating cell proliferation, sarcosphere-forming ability, clonogenic growth, chemosensitivity, migration and invasive ability of 3AB-OS cells, in vitro. We found that, miR-29b-1 overexpression consistently reduced both, 3AB-OS CSCs growth in two- and three-dimensional culture systems and their sarcosphere- and colony-forming ability. In addition, while miR-29b-1 overexpression sensitized 3AB-OS cells to chemotherapeutic drug-induced apoptosis, it did not influence their migratory and invasive capacities, thus suggesting a context-depending role of miR-29b-1. Using publicly available databases, we proceeded to identify potential miR-29b target genes, known to play a role in the above reported functions. Among these targets we analyzed CD133, N-Myc, CCND2, E2F1 and E2F2, Bcl-2 and IAP-2. We also analyzed the most important stemness markers as Oct3/4, Sox2 and Nanog. Real-time RT-PCR and western-blot analyses showed that miR-29b-1 negatively regulated the expression of these markers. Overall, the results show that miR-29b-1 suppresses stemness properties of 3AB-OS CSCs and suggest that developing miR-29b-1 as a novel therapeutic agent might offer benefits for OS treatment.


Subject(s)
Bone Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , MicroRNAs/biosynthesis , Osteosarcoma/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Osteosarcoma/pathology
13.
Bone ; 60: 198-212, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24373920

ABSTRACT

Osteosarcoma is a highly metastatic tumor affecting adolescents, for which there is no second-line chemotherapy. As suggested for most tumors, its capability to overgrow is probably driven by cancer stem cells (CSCs), and finding new targets to kill CSCs may be critical for improving patient survival. TP53 is the most frequently mutated tumor suppressor gene in cancers and mutant p53 protein (mutp53) can acquire gain of function (GOF) strongly contributing to malignancy. Studies thus far have not shown p53-GOF in osteosarcoma. Here, we investigated TP53 gene status/role in 3AB-OS cells-a highly aggressive CSC line previously selected from human osteosarcoma MG63 cells-to evaluate its involvement in promoting proliferation, invasiveness, resistance to apoptosis and stemness. By RT-PCR, methylation-specific PCR, fluorescent in situ hybridization, DNA sequence, western blot and immunofluorescence analyses, we have shown that-in comparison with parental MG63 cells where TP53 gene is hypermethylated, rearranged and in single copy-in 3AB-OS cells, TP53 is unmethylated, rearranged and in multiple copies, and mutp53 (p53-R248W/P72R) is post-translationally modified and with nuclear localization. p53-R248W/P72R-knockdown by short-interfering RNA reduced the growth and replication rate of 3AB-OS cells, markedly increasing cell cycle inhibitor levels and sensitized 3AB-OS cells to TRAIL-induced apoptosis by DR5 up-regulation; moreover, it strongly decreased the levels of stemness and invasiveness genes. We have also found that the ectopic expression of p53-R248W/P72R in MG63 cells promoted cancer stem-like features, as high proliferation rate, sphere formation, clonogenic growth, high migration and invasive ability; furthermore, it strongly increased the levels of stemness proteins. Overall, the findings suggest the involvement of p53-R248W/P72R at the origin of the aberrant characters of the 3AB-OS cells with the hypothesis that its GOF can be at the root of the dedifferentiation of MG63 cells into CSCs.


Subject(s)
Cell Dedifferentiation , Mutation/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Osteosarcoma/genetics , Tumor Suppressor Protein p53/genetics , Amino Acid Substitution , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Dedifferentiation/drug effects , Cell Dedifferentiation/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Gene Knockdown Techniques , Humans , Membrane Potential, Mitochondrial/drug effects , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Osteosarcoma/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Death Domain/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Tumor Stem Cell Assay
14.
Cancer Biol Ther ; 14(10): 922-31, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23938948

ABSTRACT

Retinoblastoma is the most common intraocular malignancy of childhood. In developing countries, treatment is limited, long-term survival rates are low and current chemotherapy causes significant morbidity to pediatric patients and significantly limits dosing. Therefore there is an urgent need to identify new therapeutic strategies to improve the clinical outcome of patients with retinoblastoma. Here, we investigated the effects of two natural compounds okadaic acid (OKA) and parthenolide (PN) on human retinoblastoma Y79 cells. For the first time we showed that OKA/PN combination at subtoxic doses induces potent synergistic apoptotic effects accompanied by lowering in p-Akt levels, increasing in the stabilized forms of p53 and potent decrease in pS166-Mdm2. We also showed the key involvement of PTEN which, after OKA/PN treatment, potently increased before p53, thus suggesting that p53 activation was under PTEN action. Moreover, after PTEN-knockdown p-Akt/ pS166Mdm2 increased over basal levels and p53 significantly lowered, while OKA/PN treatment failed both to lower p-Akt and pS166-Mdm2 and to increase p53 below/over their basal levels respectively. OKA/PN treatment potently increased ROS levels whereas decreased those of GSH. Reducing cellular GSH by l-butathionine-[S,R]-sulfoximine treatment significantly anticipated the cytotoxic effect exerted by OKA/PN. Furthermore, the effects of OKA/PN treatment on both GSH content and cell viability were less pronounced in PTEN silenced cells than in control cells. The results provide strong suggestion for combining a treatment approach that targets the PTEN/Akt/Mdm2/p53 pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Okadaic Acid/pharmacology , PTEN Phosphohydrolase/metabolism , Sesquiterpenes/pharmacology , Cell Line, Tumor , Cell Shape/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Gene Expression , Glutathione/metabolism , Humans , Oxidative Stress , PTEN Phosphohydrolase/genetics , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Reactive Oxygen Species/metabolism , Retinoblastoma , Tumor Suppressor Protein p53/metabolism
15.
J Cell Physiol ; 228(6): 1189-201, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23129384

ABSTRACT

Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second-line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB-OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB-OS cells have hypertriploid karyotype with 71-82 chromosomes. By comparing 3AB-OS CSCs to the parental cells, array CGH, Affymetrix microarray, and TaqMan® Human MicroRNA array analyses identified 49 copy number variations (CNV), 3,512 dysregulated genes and 189 differentially expressed miRNAs. Some of the chromosomal abnormalities and mRNA/miRNA expression profiles appeared to be congruent with those reported in human osteosarcomas. Bioinformatic analyses selected 196 genes and 46 anticorrelated miRNAs involved in carcinogenesis and stemness. For the first time, a predictive network is also described for two miRNA family (let-7/98 and miR-29a,b,c) and their anticorrelated mRNAs (MSTN, CCND2, Lin28B, MEST, HMGA2, and GHR), which may represent new biomarkers for osteosarcoma and may pave the way for the identification of new potential therapeutic targets.


Subject(s)
Bone Neoplasms/genetics , Cell Lineage/genetics , Neoplastic Stem Cells/metabolism , Osteosarcoma/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/pathology , Chromosome Aberrations , Chromosomes, Human , Comparative Genomic Hybridization , Computational Biology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Karyotyping , MicroRNAs/metabolism , Mitosis , Models, Genetic , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , Osteosarcoma/metabolism , Osteosarcoma/pathology , Phenotype , Ploidies , Polymerase Chain Reaction , RNA, Messenger/metabolism
16.
J Cell Biochem ; 113(11): 3380-92, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22688921

ABSTRACT

Osteosarcoma is the second leading cause of cancer-related death for children and young adults. In this study, we have subcutaneously injected-with and without matrigel-athymic mice (Fox1nu/nu) with human osteosarcoma 3AB-OS pluripotent cancer stem cells (CSCs), which we previously isolated from human osteosarcoma MG63 cells. Engrafted 3AB-OS cells were highly tumorigenic and matrigel greatly accelerated both tumor engraftment and growth rate. 3AB-OS CSC xenografts lacked crucial regulators of beta-catenin levels (E-cadherin, APC, and GSK-3beta), and crucial factors to restrain proliferation, resulting therefore in a strong proliferation potential. During the first weeks of engraftment 3AB-OS-derived tumors expressed high levels of pAKT, beta1-integrin and pFAK, nuclear beta-catenin, c-Myc, cyclin D2, along with high levels of hyperphosphorylated-inactive pRb and anti-apoptotic proteins such as Bcl-2 and XIAP, and matrigel increased the expression of proliferative markers. Thereafter 3AB-OS tumor xenografts obtained with matrigel co-injection showed decreased proliferative potential and AKT levels, and undetectable hyperphosphorylated pRb, whereas beta1-integrin and pFAK levels still increased. Engrafted tumor cells also showed multilineage commitment with matrigel particularly favoring the mesenchymal lineage. Concomitantly, many blood vessels and muscle fibers appeared in the tumor mass. Our findings suggest that matrigel might regulate 3AB-OS cell behavior providing adequate cues for transducing proliferation and differentiation signals triggered by pAKT, beta1-integrin, and pFAK and addressed by pRb protein. Our results provide for the first time a mouse model that recapitulates in vivo crucial features of human osteosarcoma CSCs that could be used to test and predict the efficacy in vivo of novel therapeutic treatments.


Subject(s)
Bone Neoplasms/genetics , Collagen/administration & dosage , Laminin/administration & dosage , Neoplastic Stem Cells/transplantation , Osteosarcoma/genetics , Pluripotent Stem Cells/transplantation , Proteoglycans/administration & dosage , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Collagen/metabolism , Drug Combinations , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Injections, Subcutaneous , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Laminin/metabolism , Male , Mice , Mice, Nude , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Osteosarcoma/metabolism , Osteosarcoma/pathology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Proteoglycans/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Transplantation, Heterologous
17.
Int J Oncol ; 33(4): 677-87, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18813780

ABSTRACT

Paclitaxel (PTX) is an anticancer drug currently in phase II clinical trials. This study shows for the first time that low doses of PTX (5 nM) potently induce apoptosis in human retinoblastoma Y79 cells. The effect of PTX is accompanied by a potent induction of E2F1 which appears to play a critical role in the effects induced by PTX. PTX induced a dose- and time-dependent effect, with G2/M arrest, cyclines A, E and B1 accumulation and a marked modification in the status of Cdc2-cyclin B1 complex, the major player of the G2/M checkpoint. Apoptosis followed G2/M arrest. An early and prolonged increase in p53 expression with its stabilization by phosphorylation and acetylation and its nuclear translocation occurred. Consistently, PTX increased p21WAF1, bax and MDM2 levels, suggesting that p53 is transcriptionally active. p53 accumulated following both E2F1 up-regulation and increase in the levels of p14ARF which interacts with MDM2 preventing ubiquitination and proteosomal degradation of p53. Both extrinsic (E2F1/Fas/JNK/caspase-2 activation) and intrinsic (Bcl-2 phosphorylation, Bid fragmentation and Bax increase) pathways seemed to be involved. Loss of mitochondrial potential and activation of apoptosome and executive caspase-3,-6 and-7 was shown. Incubation with either the irreversible pan-caspase inhibitors Z-VAD-FMK, or SP600125, a selective inhibitor of JNK, or pifithrin alpha, a potent p53 inhibitor, significantly inhibited the effects induced by PTX.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , E2F1 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Paclitaxel/pharmacology , Retinoblastoma/drug therapy , Retinoblastoma/pathology , Cell Division , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , G2 Phase , Humans , Membrane Potential, Mitochondrial , Phosphorylation , Tumor Suppressor Protein p53/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...