Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Magn Reson Imaging ; 111: 35-46, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38547935

ABSTRACT

Diffusion MRI (dMRI) is inherently limited by SNR. Scanning at 7 T increases intrinsic SNR but 7 T MRI scans suffer from regions of signal dropout, especially in the temporal lobes and cerebellum. We applied dynamic parallel transmit (pTx) to allow whole-brain 7 T dMRI and compared with circularly polarized (CP) pulses in 6 subjects. Subject-specific 2-spoke dynamic pTx pulses were designed offline for 8 slabs covering the brain. We used vendor-provided B0 and B1+ mapping. Spokes positions were set using the Fourier difference approach, and RF coefficients optimized with a Jacobi-matrix high-flip-angle optimizer. Diffusion data were analyzed with FSL. Comparing whole-brain averages for pTx against CP scans: mean flip angle error improved by 15% for excitation (2-spoke-VERSE 15.7° vs CP 18.4°, P = 0.012) and improved by 14% for refocusing (2-spoke-VERSE 39.7° vs CP 46.2°, P = 0.008). Computed spin-echo signal standard deviation improved by 14% (2-spoke-VERSE 0.185 vs 0.214 CP, P = 0.025). Temporal SNR increased by 5.4% (2-spoke-VERSE 8.47 vs CP 8.04, P = 0.004) especially in the inferior temporal lobes. Diffusion fitting uncertainty decreased by 6.2% for first fibers (2-spoke VERSE 0.0655 vs CP 0.0703, P < 0.001) and 1.3% for second fibers (2-spoke VERSE 0.139 vs CP 0.141, P = 0.01). In conclusion, dynamic parallel transmit improves the uniformity of 7 T diffusion-weighted imaging. In future, less restrictive SAR limits for parallel transmit scans are expected to allow further improvements.

2.
Magn Reson Med ; 89(3): 964-976, 2023 03.
Article in English | MEDLINE | ID: mdl-36336893

ABSTRACT

PURPOSE: To shorten the acquisition time of magnetization-prepared absolute transmit field (B1 + ) mapping known as presaturation TurboFLASH, or satTFL, to enable single breath-hold whole-heart 3D B1 + mapping. METHODS: SatTFL is modified to remove the delay between the reference and prepared images (typically 5 T1 ), with matching transmit configurations for excitation and preparation RF pulses. The new method, called Sandwich, is evaluated as a 3D sequence, measuring whole-brain and gated whole-heart B1 + maps in a single breath-hold. We evaluate the sensitivity to B1 + and T1 using numerical Bloch, extended phase graph, and Monte Carlo simulations. Phantom and in vivo images were acquired in both the brain and heart using an 8-channel transmit 7 Tesla MRI system to support the simulations. A segmented satTFL with a short readout train was used as a reference. RESULTS: The method significantly reduces acquisition times of 3D measurements from 360 s to 20 s, in the brain, while simultaneously reducing bias in the measured B1 + due to T1 and magnetization history. The mean coefficient of variation was reduced by 81% for T1 s of 0.5-3 s compared to conventional satTFL. In vivo, the reproducibility coefficient for flip angles in the range 0-130° was 4.5° for satTFL and 4.7° for our scheme, significantly smaller than for a short TR satTFL sequence, which was 12°. The 3D sequence measured B1 + maps of the whole thorax in 26 heartbeats. CONCLUSION: Our adaptations enable faster B1 + mapping, with minimal T1 sensitivity and lower sensitivity to magnetization history, enabling single breath-hold whole-heart absolute B1 + mapping.


Subject(s)
Brain , Heart , Reproducibility of Results , Heart/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Thorax , Brain Mapping/methods
3.
Magn Reson Imaging ; 93: 163-174, 2022 11.
Article in English | MEDLINE | ID: mdl-35863691

ABSTRACT

PURPOSE: Parallel transmission (pTx) is an approach to improve image uniformity for ultra-high field imaging. In this study, we modified an echo planar imaging (EPI) sequence to design subject-specific pTx pulses online. We compared its performance against EPI with conventional circularly polarised (CP) pulses. METHODS: We compared the pTx-EPI and CP-EPI sequences in a short EPI acquisition protocol and for two different functional paradigms in six healthy volunteers (2 female, aged 23-36 years, mean age 29.2 years). We chose two paradigms that are typically affected by signal dropout at 7 T: a visual objects localiser to determine face/scene selective brain regions and a semantic-processing task. RESULTS: Across all subjects, pTx-EPI improved whole-brain mean temporal signal-to-noise ratio (tSNR) by 11.0% compared to CP-EPI. We also compared the ability of pTx-EPI and CP-EPI to detect functional activation for three contrasts over the two paradigms: face > object and scene > object for the visual objects localiser and semantic association > pattern matching for the semantic-processing paradigm. Across all three contrasts, pTx-EPI showed higher median z-scores and detected more active voxels in relevant areas, as determined from previous 3 T studies. CONCLUSION: We have demonstrated a workflow for EPI acquisitions with online per-subject pulse calculations. We saw improved performance in both tSNR and functional acquisitions from pTx-EPI. Thus, we believe that online calculation pTx-EPI is robust enough for future fMRI studies, especially where activation is expected in brain areas liable to significant signal dropout.


Subject(s)
Echo-Planar Imaging , Magnetic Resonance Imaging , Adult , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Contrast Media , Echo-Planar Imaging/methods , Female , Humans , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio
4.
J Thorac Imaging ; 37(1): 42-48, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-33492047

ABSTRACT

BACKGROUND: Aortic stiffness is associated with a higher incidence of cardiovascular events including stroke. The primary aim of this study was to evaluate whether increased pulse wave velocity (PWV), a marker of stiffness, is an independent predictor of aortic atheroma. The secondary aim was to test whether increased PWV reinforces retrograde blood flow from the descending aorta (DAo), a mechanism of stroke. METHODS: We performed a cross-sectional case-control study with prospective data acquisition. In all, 40 stroke and 60 ophthalmic patients matched for age and cardiovascular risk factors were included. Multicontrast magnetic resonance imaging (MRI) protocol of the aorta tailored to allow a detailed plaque analysis using 3-dimensional (D) T1-weighted bright blood, T2-weighted and proton density-weighted black blood, and hemodynamic assessment using 4D flow MRI was applied. Individual PWV was calculated based on 4D flow MRI data using the time-to-foot of the blood flow waveform. The extent of maximum retrograde blood flow from the proximal DAo into the arch was quantified. RESULTS: PWV was higher in stroke patients compared with controls (7.62±2.59 vs. 5.96±2.49 m/s; P=0.005) and in patients with plaques (irrespective of thickness) compared with patients without plaques (7.47±2.89 vs. 5.62±1.89 m/s; P=0.002). Increased PWV was an independent predictor of plaque prevalence and contributed significantly to a predictor model explaining 36.5% (Nagelkerke R2) of the variance in plaque presence. Maximum retrograde flow extent from the proximal DAo was not correlated with PWV. CONCLUSIONS: Aortic stiffness was higher in stroke patients and associated with a higher prevalence of plaques. Increased PWV was an independent predictor of plaque presence. Accordingly, regional PWV seems to be a valuable biomarker for the assessment and management of aortic atherosclerosis. However, no association was found for increased retrograde flow extent from the DAo.


Subject(s)
Atherosclerosis , Stroke , Aorta/diagnostic imaging , Aorta, Thoracic/diagnostic imaging , Atherosclerosis/diagnostic imaging , Blood Flow Velocity , Case-Control Studies , Cross-Sectional Studies , Hemodynamics , Humans , Magnetic Resonance Imaging , Prospective Studies , Pulse Wave Analysis , Stroke/diagnostic imaging
5.
Magn Reson Med ; 86(5): 2454-2467, 2021 11.
Article in English | MEDLINE | ID: mdl-34196031

ABSTRACT

PURPOSE: To evaluate an algorithm for calibrationless parallel imaging to reconstruct undersampled parallel transmit field maps for the body and brain. METHODS: Using a combination of synthetic data and in vivo measurements from brain and body, 3 different approaches to a joint transmit and receive low-rank tensor completion algorithm are evaluated. These methods included: 1) virtual coils using the product of receive and transmit sensitivities, 2) joint-receiver coils that enforces a low rank structure across receive coils of all transmit modes, and 3) transmit low rank that uses a low rank structure for both receive and transmit modes simultaneously. The performance of each is investigated for different noise levels and different acceleration rates on an 8-channel parallel transmit 7 Tesla system. RESULTS: The virtual coils method broke down with increasing noise levels or acceleration rates greater than 2, producing normalized RMS error greater than 0.1. The joint receiver coils method worked well up to acceleration factors of 4, beyond which the normalized RMS error exceeded 0.1. Transmit low rank enabled an eightfold acceleration, with most normalized RMS errors remaining below 0.1. CONCLUSION: This work demonstrates that undersampling factors of up to eightfold are feasible for transmit array mapping and can be reconstructed using calibrationless parallel imaging methods.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Acceleration , Brain/diagnostic imaging , Phantoms, Imaging
6.
Front Neuroinform ; 15: 777828, 2021.
Article in English | MEDLINE | ID: mdl-35126079

ABSTRACT

Cerebral microbleeds (CMBs) appear as small, circular, well defined hypointense lesions of a few mm in size on T2*-weighted gradient recalled echo (T2*-GRE) images and appear enhanced on susceptibility weighted images (SWI). Due to their small size, contrast variations and other mimics (e.g., blood vessels), CMBs are highly challenging to detect automatically. In large datasets (e.g., the UK Biobank dataset), exhaustively labelling CMBs manually is difficult and time consuming. Hence it would be useful to preselect candidate CMB subjects in order to focus on those for manual labelling, which is essential for training and testing automated CMB detection tools on these datasets. In this work, we aim to detect CMB candidate subjects from a larger dataset, UK Biobank, using a machine learning-based, computationally light pipeline. For our evaluation, we used 3 different datasets, with different intensity characteristics, acquired with different scanners. They include the UK Biobank dataset and two clinical datasets with different pathological conditions. We developed and evaluated our pipelines on different types of images, consisting of SWI or GRE images. We also used the UK Biobank dataset to compare our approach with alternative CMB preselection methods using non-imaging factors and/or imaging data. Finally, we evaluated the pipeline's generalisability across datasets. Our method provided subject-level detection accuracy > 80% on all the datasets (within-dataset results), and showed good generalisability across datasets, providing a consistent accuracy of over 80%, even when evaluated across different modalities.

7.
Magn Reson Med ; 84(5): 2739-2753, 2020 11.
Article in English | MEDLINE | ID: mdl-32378746

ABSTRACT

PURPOSE: The gradient-echo MR signal in brain white matter depends on the orientation of the fibers with respect to the external magnetic field. To map microstructure-specific magnetic susceptibility in orientationally heterogeneous material, it is thus imperative to regress out unwanted orientation effects. METHODS: This work introduces a novel framework, referred to as microscopic susceptibility anisotropy imaging, that disentangles the 2 principal effects conflated in gradient-echo measurements, (a) the susceptibility properties of tissue microenvironments, especially the myelin microstructure, and (b) the axon orientation distribution relative to the magnetic field. Specifically, we utilize information about the orientational tissue structure inferred from diffusion MRI data to factor out the B0 -direction dependence of the frequency difference signal. RESULTS: A human pilot study at 3 T demonstrates proxy maps of microscopic susceptibility anisotropy unconfounded by fiber crossings and orientation dispersion as well as magnetic field direction. The developed technique requires only a dual-echo gradient-echo scan acquired at 1 or 2 head orientations with respect to the magnetic field and a 2-shell diffusion protocol achievable on standard scanners within practical scan times. CONCLUSIONS: The quantitative recovery of microscopic susceptibility features in the presence of orientational heterogeneity potentially improves the assessment of microstructural tissue integrity.


Subject(s)
Image Processing, Computer-Assisted , White Matter , Anisotropy , Brain/diagnostic imaging , Humans , Pilot Projects , White Matter/diagnostic imaging
8.
Neuroimage ; 166: 400-424, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29079522

ABSTRACT

UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI, carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR, susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first 10,000 imaged subjects has recently been released for general research access. To help convert this data into useful summary information we have developed an automated processing and QC (Quality Control) pipeline that is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative investigations carried out as part of the development of both the imaging protocol and the processing pipeline.


Subject(s)
Brain/diagnostic imaging , Databases, Factual , Datasets as Topic , Image Processing, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Quality Control , Databases, Factual/standards , Datasets as Topic/standards , Humans , Image Processing, Computer-Assisted/standards , Machine Learning/standards , Magnetic Resonance Imaging/standards , Neuroimaging/standards , United Kingdom
9.
PLoS One ; 12(10): e0187153, 2017.
Article in English | MEDLINE | ID: mdl-29073228

ABSTRACT

PURPOSE: Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. MATERIALS AND METHODS: A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. RESULTS: The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. CONCLUSION: This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T.


Subject(s)
Heart/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Humans , Magnetic Resonance Imaging/methods , Phosphorus Isotopes , Signal-To-Noise Ratio
10.
J Cardiovasc Magn Reson ; 19(1): 67, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28877718

ABSTRACT

BACKGROUND: It was our purpose to identify vulnerable plaques in the thoracic aorta using 3D multi-contrast CMR and estimate the risk of cerebral embolization using 4D flow CMR in cryptogenic stroke patients and controls. METHODS: One hundred patients (40 with cryptogenic stroke, 60 ophthalmologic controls matched for age, sex and presence of hypertension) underwent a novel 3D multi-contrast (T1w, T2w, PDw) CMR protocol at 3 Tesla for plaque detection and characterization within the thoracic aorta, which was combined with 4D flow CMR for mapping potential embolization pathways. Plaque morphology was assessed in consensus reading by two investigators and classified according to the modified American-Heart-Association (AHA) classification of atherosclerotic plaques. RESULTS: In the thoracic aorta, plaques <4 mm thickness were found in a similar number of stroke patients and controls [23 (57.5%) versus 33 (55.0%); p = 0.81]. However, plaques ≥4 mm were more frequent in stroke patients [22 (55.0%) versus 10 (16.7%); p < 0.001]. Of those patients with plaques ≥4 mm, seven (17.5%) stroke patients and two (3.3%) controls (p < 0.001) had potentially vulnerable AHA type VI plaques. Six stroke patients with vulnerable AHA type VI plaques ≥4 mm had potential embolization pathways connecting the plaque, located in the aortic arch (n = 3) and proximal descending aorta (n = 3), with the individual territory of stroke, which made them the most likely source of stroke in those patients. CONCLUSIONS: Our findings underline the significance of ≥4 mm thick and vulnerable plaques in the aortic arch and descending aorta as a relevant etiology of stroke. CLINICAL TRIAL REGISTRATION: Unique identifier: DRKS00006234 ; date of registration: 11/06/2014.


Subject(s)
Aorta, Thoracic/diagnostic imaging , Aortic Diseases/diagnostic imaging , Atherosclerosis/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Intracranial Embolism/diagnostic imaging , Magnetic Resonance Angiography/methods , Plaque, Atherosclerotic , Stroke/diagnostic imaging , Aged , Aortic Diseases/complications , Atherosclerosis/complications , Case-Control Studies , Contrast Media/administration & dosage , Female , Humans , Intracranial Embolism/etiology , Male , Middle Aged , Observer Variation , Predictive Value of Tests , Reproducibility of Results , Risk Factors , Stroke/etiology
11.
Eur J Radiol ; 91: 148-154, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28629561

ABSTRACT

OBJECTIVES: To develop a 3D-multi-contrast MRI protocol allowing for high resolution imaging of the wall and of atheroma in the thoracic aorta. METHODS: Eleven healthy volunteers and eleven acute stroke patients with aortic plaques detected by TEE underwent MRI at 3T. The MRI-protocol consisted of a T1w-bright-blood, a T2w- and a PDw-black-blood sequence (spatial resolution=1.15mm3). Image quality was assessed by two blinded investigators using a 3-point score and intra- and inter-rater agreement was tested. In patients, atherosclerotic plaques were graded according to the modified American Heart Association (AHA) classification. RESULTS: Total examination time was 35:42±7:48min in volunteers and 41:07±3:15min in patients. Image quality was graded with the highest score in 80-94% of T1w, 89-96% of T2w and 79-86% of PDw datasets. Intra- and inter-rater reliability regarding image quality grading was high. Five stroke patients showed AHA type III lesions, three had AHA type VII and two had type VIII plaques. One patient had a vulnerable appearing AHA VI plaque. CONCLUSIONS: 3D-multi-contrast MR-imaging of the aorta was performed with high image quality and in reasonable time. It allows evaluation of atherosclerotic plaque composition throughout the aortic arch and can be used to identify vulnerable plaques in acute stroke patients.


Subject(s)
Aorta, Thoracic/physiology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Plaque, Atherosclerotic/pathology , Stroke/pathology , Aorta, Thoracic/pathology , Humans , Reproducibility of Results
12.
Nat Neurosci ; 19(11): 1523-1536, 2016 11.
Article in English | MEDLINE | ID: mdl-27643430

ABSTRACT

Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank.


Subject(s)
Biological Specimen Banks , Brain/cytology , Epidemiologic Studies , Neuroimaging , Adult , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , United Kingdom
13.
J Cardiovasc Magn Reson ; 18(1): 31, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27245203

ABSTRACT

BACKGROUND: It was our aim to systematically analyze pulmonary artery blood flow within different age-groups in the general population using 4D flow cardiovascular magnetic resonance (CMR) in order to provide a context for interpreting results of future studies (e.g., in pulmonary hypertension) using this technique. METHODS: An age-stratified sample (n = 126) of the population of the city of Freiburg, Germany, underwent ECG-triggered and navigator-gated 4D flow CMR at 3 T of the pulmonary arteries and the thoracic aorta. Analysis planes were placed in the main, left, and right pulmonary artery using dedicated software. Study participants were divided into three groups (1:20-39; 2:40-59; and 3:60-80 years of age). Subsequently, pulmonary blood flow was visualized, quantified and compared between groups. RESULTS: Time-to-peak of systolic antegrade flow was shorter, peak and average velocities and flow volumes were lower in older subjects. At the end of systole, retrograde flow in the main pulmonary artery was observed in all but one subject. Subsequently, a second antegrade flow peak occurred in diastole which was lower in older subjects. Age was an independent predictor of hemodynamic change after adjustment for cardiovascular risk factors and body-mass-index. During systole, abnormal vortices occurred in the main pulmonary artery in four male subjects. CONCLUSIONS: Comprehensive analysis of pulmonary blood flow was feasible in all subjects. We were able to detect an independent effect of ageing on pulmonary hemodynamics reflecting increased vessel stiffness and reduced pulmonary circulation. Findings of this study may be helpful for discriminating physiological from pathological flow in patients with pulmonary diseases in the future.


Subject(s)
Aging , Hemodynamics , Magnetic Resonance Angiography/methods , Pulmonary Artery/diagnostic imaging , Pulmonary Circulation , Adult , Age Factors , Aged , Aged, 80 and over , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/physiology , Blood Flow Velocity , Cross-Sectional Studies , Female , Germany , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Predictive Value of Tests , Pulmonary Artery/physiopathology , Regional Blood Flow , Young Adult
14.
Cerebrovasc Dis ; 39(5-6): 287-92, 2015.
Article in English | MEDLINE | ID: mdl-25896851

ABSTRACT

BACKGROUND: Retrograde diastolic blood flow in the proximal descending aorta (DAo), which connects plaques ≥4 mm thickness with brain-supplying arteries, has previously been identified as a possible source of brain embolism. Currently, only 4D flow MRI is able to visualize and quantify potential retrograde embolization pathways in the DAo in-vivo. Hence, it was our aim to test if the extent of retrograde flow could be estimated by routine 2D transesophageal echocardiography (TEE). METHODS: Forty-eight acute stroke patients were prospectively included and they underwent Doppler examinations of the transition zone between the aortic arch and the DAo using a 20 mm 2D sample volume in longitudinal section at 90-140° Doppler angle during routine TEE. Velocity-time-integrals (VTI) were studied for antegrade and retrograde velocities and the ratio (VTIratio) was calculated and correlated with the length of retrograde pathlines at that site, which were visualized using 4D flow MRI at 3-Tesla. A receiver operating characteristic (ROC) curve was used to evaluate a threshold value of VTIratio in differentiating large (≥3 cm) from small (<3 cm) retrograde flow extent. RESULTS: At the TEE measurement site, the mean VTIratio was 0.53 ± 0.16 and the mean length of retrograde pathlines reaching back into the aortic arch was 3.1 ± 1.4 cm. VTIratio was an independent predictor of retrograde pathline length (r = 0.44; p = 0.002). ROC analysis identified a VTIratio threshold value of 0.6012 with a sensitivity of 0.5, a specificity of 0.92, and positive and negative predictive values of 0.84 and 0.68, respectively. Accordingly, 11 (22.91%) patients had a VTIratio cutoff value ≥0.6012 and corresponding retrograde pathline length ≥3 cm in 4D flow MRI. CONCLUSIONS: TEE allows predicting the length of retrograde pathlines. Hence, it may offer a cost-effective way to investigate independent predictors of DAo flow reversal in large-scale studies. However, TEE is only of limited value as a screening tool for high retrograde flow in a clinical setting, as only ∼23% of patients can be spared 4D flow MRI, which remains indispensable for the exact assessment of individual embolization pathways from plaques of the DAo in-vivo.


Subject(s)
Aorta, Thoracic/physiopathology , Aortic Diseases/physiopathology , Hemodynamics/physiology , Intracranial Embolism/diagnostic imaging , Magnetic Resonance Imaging , Stroke/physiopathology , Adult , Aged , Aged, 80 and over , Animals , Aorta, Thoracic/pathology , Aortic Diseases/diagnosis , Echocardiography, Transesophageal/methods , Female , Humans , Magnetic Resonance Angiography/methods , Male , Middle Aged
15.
Cerebrovasc Dis ; 38(6): 410-7, 2014.
Article in English | MEDLINE | ID: mdl-25472468

ABSTRACT

BACKGROUND: Retrograde diastolic blood flow in the proximal descending aorta (DAo) connecting complex plaques (≥4 mm thick) with brain-supplying supra-aortic arteries may constitute a source of stroke. Yet, data only from high-risk populations (cryptogenic stroke patients with aortic atheroma≥3 mm) regarding the prevalence of this potential stroke mechanism are available. We aimed to quantify the frequency of this mechanism in unselected patients with cryptogenic stroke after routine diagnostics and controls without a history of stroke. METHODS: 88 patients (67 stroke patients, 21 cardiac controls) were prospectively included. 3D T1-weighted bright blood MRI of the aorta was applied for the detection of complex DAo atheroma. ECG-triggered and navigator-gated 4D flow MRI allowed measuring time-resolved 3D blood flow in vivo. Potential retrograde embolization pathways were defined as the co-occurrence of complex plaques and retrograde blood flow in the DAo reaching the outlet of (a) the left subclavian artery, (b) the left common carotid artery, or/and (c) the brachiocephalic trunk. The frequency of these pathways was analyzed by importing 2D plaque images into 3D blood flow visualization software. RESULTS: Complex DAo plaques were more frequent in stroke patients (44 in 31/67 patients (46.3%) vs. 5 in 4/21 controls (19.1%); p=0.039), especially in older patients (29/46 (63.04%) patients≥60 years of age with 41 plaques vs. 2/21 (9.14%) patients<60 years of age with 3 plaques; p<0.001). Contrary to our assumption, retrograde diastolic blood flow at the DAo occurred in every patient irrespective of the existence of plaques with a similar extent in both groups (26±14 vs. 32±18 mm; p=0.114). Therefore, only the higher prevalence of complex DAo plaques in stroke patients resulted in a three times higher frequency of potential retrograde embolization pathways compared to controls (22/67 (32.8%) vs. 2/21 (9.5%) controls; p=0.048). CONCLUSIONS: This study revealed that retrograde flow in the descending aorta is a common phenomenon not only in stroke patients. The existence of potential retrograde embolization pathways depends mainly on the occurrence of complex plaques in the area 0 to ∼30 mm behind the outlet of the left subclavian artery, which is exposed to flow reversal. In conclusion, we have shown that the frequency of potential retrograde embolization pathways was significantly higher in stroke patients suggesting that this mechanism may play a role in retrograde brain embolism.


Subject(s)
Aorta, Thoracic/pathology , Aortic Diseases/epidemiology , Embolism , Plaque, Atherosclerotic/epidemiology , Regional Blood Flow , Stroke/epidemiology , Aged , Aged, 80 and over , Aorta, Thoracic/physiopathology , Aortic Diseases/pathology , Aortic Diseases/physiopathology , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/physiopathology , Prevalence , Prospective Studies
16.
J Magn Reson ; 242: 233-42, 2014 May.
Article in English | MEDLINE | ID: mdl-24705364

ABSTRACT

We present the results of a systematic measurement of the magnetic susceptibility of small material samples in a 9.4 T MRI scanner. We measured many of the most widely used materials in MR engineering and MR micro technology, including various polymers, optical and substrate glasses, resins, glues, photoresists, PCB substrates and some fluids. Based on our data, we identify particularly suitable materials with susceptibilities close to water. For polyurethane resins and elastomers, we also show the MR spectra, as they may be a good substitute for silicone elastomers and good casting resins.

17.
Magn Reson Med ; 69(6): 1650-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22807105

ABSTRACT

Echo-planar imaging is a fast and commonly used magnetic resonance imaging technique with applications in diffusion weighted and functional MRI. Fast data acquisition in echo-planar imaging is accomplished by the extended readout, which also introduces sensitivity to off-resonance effects such as amplitude of static (polarizing) field inhomogeneities and eddy-currents. These off-resonance effects produce geometric distortions in the corresponding echo-planar images. To correct for these distortions, an acceleration of point spread function (PSF) acquisition using a special sampling pattern is presented in this work. The proposed technique allows for reliable and fully automated distortion correction of echo-planar images at a field strength of 3 T. Additionally, a new approach to visualize and determine the distortions in a hybrid (x, y, kPSF) three-dimensional space is proposed. The accuracy and robustness of the proposed technique is demonstrated in phantom and in vivo experiments. The accuracy of the presented method here is compared to previous techniques for echo-planar imaging distortion correction such as PLACE.


Subject(s)
Algorithms , Artifacts , Brain/anatomy & histology , Echo-Planar Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Humans , Reproducibility of Results , Sensitivity and Specificity
18.
NMR Biomed ; 25(8): 1000-6, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22290622

ABSTRACT

A novel spectroscopic method for submillisecond TEs and three-dimensional arbitrarily shaped voxels was developed and applied to phantom and in vivo measurements, with additional parallel excitation (PEX) implementation. A segmented spherical shell excitation trajectory was used in combination with appropriate radiofrequency weights for target selection in three dimensions. Measurements in a two-compartment phantom realized a TE of 955 µs, excellent spectral quality and comparable signal-to-noise ratios between accelerated (R = 2) and nonaccelerated modes. The two-compartment model allowed a comparison of the spectral suppression qualities of the method and, although outer volume signals were suppressed by factors of 1434 and 2246 compared with the theoretical unsuppressed case for the clinical and PEX modes, respectively, incomplete suppression of the outer volume (935 cm(3) compared with a target volume of 5.86 cm(3) ) resulted in a spectral contamination of 10.2% and 6.5% compared with the total signal. The method was also demonstrated in vivo in human brain on a clinical system at TE = 935 µs with good signal-to-noise ratio and spatial and spectral selection, and included LCModel relative quantification analysis. Eight metabolites showed significant fitting accuracy, including aspartate, N-acetylaspartylglutamate, glutathione and glutamate.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Computer Simulation , Echo-Planar Imaging , Humans , Phantoms, Imaging , Radio Waves , Time Factors
19.
NMR Biomed ; 23(9): 1103-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20669159

ABSTRACT

The objective of this study was to evaluate the feasibility of integrating real-time ultrasound echo guidance in MR-guided high-intensity focused ultrasound (HIFU) heating of mobile targets in order to reduce latency between displacement analysis and HIFU treatment. Experiments on a moving phantom were carried out with MRI-guided HIFU during continuous one-dimensional ultrasound echo detection using separate HIFU and ultrasound imaging transducers. Excellent correspondence was found between MR- and ultrasound-detected displacements. Real-time ultrasound echo-based target tracking during MR-guided HIFU heating is shown with the dimensions of the heated area similar to those obtained for a static target. This work demonstrates that the combination of the two modalities opens up perspectives for motion correction in MRI-guided HIFU with negligible latency.


Subject(s)
Magnetic Resonance Imaging/methods , Phantoms, Imaging , Ultrasonics , Heating , Humans , Magnetic Resonance Imaging/instrumentation , Motion , Transducers , Ultrasonic Therapy/instrumentation , Ultrasonic Therapy/methods
20.
NMR Biomed ; 22(8): 843-51, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19562728

ABSTRACT

A method is proposed for estimating the perfusion rate, thermal diffusivity, and the absorption coefficient that influence the local temperature during high intensity focused ultrasound (HIFU) thermotherapy procedures. For this purpose, HIFU heating experiments (N = 100) were performed ex vivo on perfused porcine kidney (N = 5) under different flow conditions. The resulting spatio-temporal temperature variations were measured non-invasively by rapid volumetric MR-temperature imaging. The bio-heat transfer (BHT) model was adapted to describe the spatio-temporal evolution of tissue temperature in the cortex. Absorption and perfusion coefficients were determined by fitting the integrated thermal load (spatial integration of the thermal maps) curves in time with an analytical solution of the BHT equation proposed for single point HIFU heating. Thermal diffusivity was determined independently by analyzing the spatial spread of the temperature in time during the cooling period. Absorption coefficient and thermal diffusivity were found to be independent of flow, with mean and average values of 11.0 +/- 1.85 mm(3) x K x J(-1) and 0.172 +/- 0.003 mm(2) x s(-1), respectively. A linear dependence of the calculated perfusion rate with flow was observed with a slope of 9.20 +/- 0.75 mm(-3). The perfusion was found to act as a scaling term with respect to temperature but with no effect on the spatial spread of temperature which only depends on the thermal diffusivity. All results were in excellent agreement with the BHT model, indicating that this model is suitable to predict the evolution of temperature in perfused organs. This quantitative approach allows for determination of tissue thermal parameters with excellent precision (within 10%) and may thus help in quantifying the influence of perfusion during MR guided high intensity focused ultrasound (MRgHIFU).


Subject(s)
Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , Temperature , Ultrasonic Therapy/methods , Animals , Humans , Kidney/anatomy & histology , Swine , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL
...