Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 13: 2857-2867, 2018.
Article in English | MEDLINE | ID: mdl-29844669

ABSTRACT

BACKGROUND: Effects of silver nanoparticles (AgNP) on the intestinal virome/phage community are mostly unknown. The working hypothesis of this study was that the exposure of pharmaceutical/nanomedicine and other consumer-use material containing silver ions and nanoparticles to the gastrointestinal tract may result in disturbance of the beneficial gut viruses/phages. METHODS: This study assesses the impact of AgNP on the survival of individual bacteriophages using classical virology cultivation and electron microscopic techniques. Moreover, how the ingested AgNP may affect the intestinal virus/phages was investigated by conducting whole-genome sequencing (WGS). RESULTS: The viral cultivation methods showed minimal effect on selected viruses during short-term exposure (24 h) to 10 nm AgNP. However, long-term exposure (7 days) resulted in significant reduction in the viral/phage population. Data obtained from WGS were filtered and compared with a nonredundant viral database composed of the complete viral genomes from NCBI using KRAKEN (confidence scoring threshold of 0.5). To compare the relative differential changes, the sequence counts in each treatment group were normalized to account for differences in DNA sequencing library sizes. Bioinformatics techniques were developed to visualize the virome comparative changes in a phylogenic tree graph. The computed data revealed that AgNP had an impact on several intestinal bacteriophages that prey on bacterial genus Enterobacteria, Yersinia and Staphylococcus as host species. Moreover, there was an independent effect of nanoparticles and released ions. CONCLUSION: Overall, this study reveals that the small-size AgNP could lead to perturbations of the gut microbial ecosystem, leading to the inactivation of resident phages that play an important role in influencing gastrointestinal health.


Subject(s)
Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/virology , Metal Nanoparticles , Silver/pharmacology , Viruses/drug effects , Animals , Bacteria/drug effects , Bacteria/virology , Bacteriophages/drug effects , Bacteriophages/genetics , Computational Biology/methods , Escherichia coli/drug effects , Escherichia coli/virology , Feces/virology , Genome, Viral/drug effects , Macaca mulatta , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/virology , Temperature , Viruses/genetics
2.
Front Microbiol ; 8: 1275, 2017.
Article in English | MEDLINE | ID: mdl-28798726

ABSTRACT

To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.

3.
PLoS One ; 11(9): e0161946, 2016.
Article in English | MEDLINE | ID: mdl-27653506

ABSTRACT

It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer's patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection.

4.
PLoS One ; 11(5): e0156469, 2016.
Article in English | MEDLINE | ID: mdl-27214231

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0147027.].

5.
PLoS One ; 11(1): e0147027, 2016.
Article in English | MEDLINE | ID: mdl-26783758

ABSTRACT

Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.


Subject(s)
Cattle Diseases/genetics , Gene Expression Profiling/methods , Rift Valley Fever/genetics , Rift Valley fever virus/immunology , Sequence Analysis, RNA/methods , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Cattle , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Computational Biology/methods , Gene Expression Regulation , Gene Regulatory Networks , Rift Valley Fever/immunology , Rift Valley Fever/prevention & control , Seroconversion , Time Factors
6.
PLoS One ; 8(12): e81719, 2013.
Article in English | MEDLINE | ID: mdl-24349118

ABSTRACT

Brucella melitensis causes the most severe and acute symptoms of all Brucella species in human beings and infects hosts primarily through the oral route. The epithelium covering domed villi of jejunal-ileal Peyer's patches is an important site of entry for several pathogens, including Brucella. Here, we use the calf ligated ileal loop model to study temporal in vivo Brucella-infected host molecular and morphological responses. Our results document Brucella bacteremia occurring within 30 min after intraluminal inoculation of the ileum without histopathologic traces of lesions. Based on a system biology Dynamic Bayesian Network modeling approach (DBN) of microarray data, a very early transient perturbation of the host enteric transcriptome was associated with the initial host response to Brucella contact that is rapidly averted allowing invasion and dissemination. A detailed analysis revealed active expression of Syndecan 2, Integrin alpha L and Integrin beta 2 genes, which may favor initial Brucella adhesion. Also, two intestinal barrier-related pathways (Tight Junction and Trefoil Factors Initiated Mucosal Healing) were significantly repressed in the early stage of infection, suggesting subversion of mucosal epithelial barrier function to facilitate Brucella transepithelial migration. Simultaneously, the strong activation of the innate immune response pathways would suggest that the host mounts an appropriate protective immune response; however, the expression of the two key genes that encode innate immunity anti-Brucella cytokines such as TNF-α and IL12p40 were not significantly changed throughout the study. Furthermore, the defective expression of Toll-Like Receptor Signaling pathways may partially explain the lack of proinflammatory cytokine production and consequently the absence of morphologically detectable inflammation at the site of infection. Cumulatively, our results indicate that the in vivo pathogenesis of the early infectious process of Brucella is primarily accomplished by compromising the mucosal immune barrier and subverting critical immune response mechanisms.


Subject(s)
Brucella melitensis/pathogenicity , Brucellosis/genetics , Ileum/metabolism , Intestinal Mucosa/metabolism , Peyer's Patches/metabolism , Transcriptome/immunology , Animals , Bacterial Adhesion , Bayes Theorem , Brucella melitensis/immunology , Brucellosis/immunology , Brucellosis/metabolism , Brucellosis/microbiology , Cattle , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions , Ileum/immunology , Ileum/microbiology , Immune Evasion , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Molecular Sequence Annotation , Peyer's Patches/immunology , Peyer's Patches/microbiology , Signal Transduction , Systems Biology
7.
BMC Genomics ; 14: 459, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23834488

ABSTRACT

BACKGROUND: In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. RESULTS: cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. CONCLUSIONS: The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Brucella suis/genetics , Brucella suis/physiology , Gene Expression Profiling , Stress, Physiological/genetics , Animals , Brucella suis/enzymology , Brucella suis/metabolism , Electron Transport Complex IV/genetics , Macrophages/cytology , Methionine/biosynthesis , Mice , Mutation , Nitrate Reductase/genetics , Oligonucleotide Array Sequence Analysis , Superoxide Dismutase/genetics , Up-Regulation , Vacuoles/microbiology
8.
PLoS One ; 7(8): e42127, 2012.
Article in English | MEDLINE | ID: mdl-22912686

ABSTRACT

Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways and specifically modified mechanistic genes contributing to the colonization of Peyer's patch.


Subject(s)
Gene Expression Profiling , Immune Tolerance/genetics , Mycobacterium avium subsp. paratuberculosis/physiology , Systems Biology , Adaptive Immunity/genetics , Animals , Bayes Theorem , Cattle , HeLa Cells , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mycobacterium avium subsp. paratuberculosis/immunology , Oligonucleotide Array Sequence Analysis , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/microbiology , Time Factors
9.
Microbes Infect ; 14(9): 756-67, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22484383

ABSTRACT

Brucella spp. infect hosts primarily by adhering and penetrating mucosal surfaces, however the initial molecular phenomena of this host:pathogen interaction remain poorly understood. We hypothesized that characterizing the epithelial-like human HeLa cell line molecular response to wild type Brucella melitensis infection would help to understand the role of the mucosal epithelium at the onset of the Brucella pathogenesis. RNA samples from B. melitensis-infected HeLa cells were taken at 4 and 12 h of infection and hybridized in a cDNA microarray. The analysis using a dynamic Bayesian network modeling approach (DBN) identified several pathways, biological processes, cellular components and molecular functions altered due to infection at 4 h p.i., but almost none at 12 h p.i. The in silico modeling results were experimentally tested by knocking down the expression of MAPK1 by siRNA technology. MAPK1-siRNA transfected cell cultures decreased the internalization and impaired the intracellular replication of the pathogen in HeLa cells after 4 h p.i. DBN analysis provides important insights into the role of the epithelial cells response to Brucella infection and guide research to novel mechanisms identification.


Subject(s)
Brucella melitensis/pathogenicity , Epithelial Cells/microbiology , Gene Expression Profiling , Host-Pathogen Interactions , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Gene Knockdown Techniques , HeLa Cells , Humans , Microarray Analysis , RNA/genetics , RNA/isolation & purification , Time Factors
10.
PLoS One ; 6(11): e26869, 2011.
Article in English | MEDLINE | ID: mdl-22096503

ABSTRACT

Salmonella enterica Serovar Typhimurium (S. Typhimurium) causes enterocolitis with diarrhea and polymorphonuclear cell (PMN) influx into the intestinal mucosa in humans and calves. The Salmonella Type III Secretion System (T3SS) encoded at Pathogenicity Island I translocates Salmonella effector proteins SipA, SopA, SopB, SopD, and SopE2 into epithelial cells and is required for induction of diarrhea. These effector proteins act together to induce intestinal fluid secretion and transcription of C-X-C chemokines, recruiting PMNs to the infection site. While individual molecular interactions of the effectors with cultured host cells have been characterized, their combined role in intestinal fluid secretion and inflammation is less understood. We hypothesized that comparison of the bovine intestinal mucosal response to wild type Salmonella and a SipA, SopABDE2 effector mutant relative to uninfected bovine ileum would reveal heretofore unidentified diarrhea-associated host cellular pathways. To determine the coordinated effects of these virulence factors, a bovine ligated ileal loop model was used to measure responses to wild type S. Typhimurium (WT) and a ΔsipA, sopABDE2 mutant (MUT) across 12 hours of infection using a bovine microarray. Data were analyzed using standard microarray analysis and a dynamic bayesian network modeling approach (DBN). Both analytical methods confirmed increased expression of immune response genes to Salmonella infection and novel gene expression. Gene expression changes mapped to 219 molecular interaction pathways and 1620 gene ontology groups. Bayesian network modeling identified effects of infection on several interrelated signaling pathways including MAPK, Phosphatidylinositol, mTOR, Calcium, Toll-like Receptor, CCR3, Wnt, TGF-ß, and Regulation of Actin Cytoskeleton and Apoptosis that were used to model of host-pathogen interactions. Comparison of WT and MUT demonstrated significantly different patterns of host response at early time points of infection (15 minutes, 30 minutes and one hour) within phosphatidylinositol, CCR3, Wnt, and TGF-ß signaling pathways and the regulation of actin cytoskeleton pathway.


Subject(s)
Bacterial Proteins/immunology , Guanine Nucleotide Exchange Factors/immunology , Microfilament Proteins/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/metabolism , Systems Biology/methods , Animals , Bacterial Proteins/genetics , Bayes Theorem , Cattle , Chemokine CCL2/metabolism , Chemokine CCL8/metabolism , Chemokine CXCL6/metabolism , Guanine Nucleotide Exchange Factors/genetics , Interleukin-8/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Male , Microfilament Proteins/genetics , Oligonucleotide Array Sequence Analysis , Peyer's Patches/immunology , Peyer's Patches/metabolism , Real-Time Polymerase Chain Reaction , Salmonella Infections, Animal/metabolism , Salmonella typhimurium/pathogenicity , Signal Transduction/physiology
11.
Vaccine ; 29(41): 7197-206, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21651944

ABSTRACT

The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host-pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host-pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines.


Subject(s)
Bacterial Vaccines/immunology , Brucellosis/veterinary , Paratuberculosis/prevention & control , Salmonella Infections, Animal/prevention & control , Systems Biology/methods , Zoonoses/transmission , Animals , Brucella melitensis/immunology , Brucella melitensis/pathogenicity , Brucellosis/immunology , Brucellosis/prevention & control , Brucellosis/transmission , Host-Pathogen Interactions , Humans , Mycobacterium avium subsp. paratuberculosis/immunology , Mycobacterium avium subsp. paratuberculosis/pathogenicity , Paratuberculosis/immunology , Paratuberculosis/transmission , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/transmission , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Veterinary Medicine/methods , Zoonoses/microbiology
12.
BMC Proc ; 5 Suppl 4: S6, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21645321

ABSTRACT

BACKGROUND: To decipher the complexity and improve the understanding of host-pathogen interactions, biologists must adopt new system level approaches in which the hierarchy of biological interactions and dynamics can be studied. This paper presents the application of systems biology for the cross-comparative analysis and interactome modeling of three different infectious agents, leading to the identification of novel, unique and common molecular host responses (biosignatures). METHODS: A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Salmonella enterica Typhimurium (STM) and Mycobacterium avium paratuberculosis (MAP). A bovine ligated ileal loop biological model was employed to capture the host gene expression response at four time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a systematic comparative analysis of pathway and Gene Ontology category perturbations. RESULTS: A cross-comparative assessment of 219 pathways and 1620 gene ontology (GO) categories was performed on each pathogen-host condition. Both unique and common pathway and GO perturbations indicated remarkable temporal differences in pathogen-host response profiles. Highly discriminatory pathways were selected from each pathogen condition to create a common system level interactome model comprised of 622 genes. This model was trained with data from each pathogen condition to capture unique and common gene expression features and relationships leading to the identification of candidate host-pathogen points of interactions and discriminatory biosignatures. CONCLUSIONS: Our results provide deeper understanding of the overall complexity of host defensive and pathogen invasion processes as well as the identification of novel host-pathogen interactions. The application of advanced computational methods for developing interactome models based on DBN has proven to be instrumental in conducting multi-conditional cross-comparative analyses. Further, this approach generates a fully simulateable model with capabilities for predictive analysis as well as for diagnostic pattern recognition. The resulting biosignatures may represent future targets for identification of emerging pathogens as well as for development of antimicrobial drugs, immunotherapeutics, or vaccines for prevention and treatment of diseases caused by known, emerging/re-emerging infectious agents.

13.
BMC Microbiol ; 10: 167, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20529360

ABSTRACT

BACKGROUND: Quorum sensing is a communication system that regulates gene expression in response to population density and often regulates virulence determinants. Deletion of the luxR homologue vjbR highly attenuates intracellular survival of Brucella melitensis and has been interpreted to be an indication of a role for QS in Brucella infection. Confirmation for such a role was suggested, but not confirmed, by the demonstrated in vitro synthesis of an auto-inducer (AI) by Brucella cultures. In an effort to further delineate the role of VjbR to virulence and survival, gene expression under the control of VjbR and AI was characterized using microarray analysis. RESULTS: Analyses of wildtype B. melitensis and isogenic DeltavjbR transciptomes, grown in the presence and absence of exogenous N-dodecanoyl homoserine lactone (C12-HSL), revealed a temporal pattern of gene regulation with variances detected at exponential and stationary growth phases. Comparison of VjbR and C12-HSL transcriptomes indicated the shared regulation of 127 genes with all but 3 genes inversely regulated, suggesting that C12-HSL functions via VjbR in this case to reverse gene expression at these loci. Additional analysis using a DeltavjbR mutant revealed that AHL also altered gene expression in the absence of VjbR, up-regulating expression of 48 genes and a luxR homologue blxR 93-fold at stationary growth phase. Gene expression alterations include previously un-described adhesins, proteases, antibiotic and toxin resistance genes, stress survival aids, transporters, membrane biogenesis genes, amino acid metabolism and transport, transcriptional regulators, energy production genes, and the previously reported fliF and virB operons. CONCLUSIONS: VjbR and C12-HSL regulate expression of a large and diverse number of genes. Many genes identified as virulence factors in other bacterial pathogens were found to be differently expressed, suggesting an important contribution to intracellular survival of Brucella. From these data, we conclude that VjbR and C12-HSL contribute to virulence and survival by regulating expression of virulence mechanisms and thus controlling the ability of the bacteria to survive within the host cell. A likely scenario occurs via QS, however, operation of such a mechanism remains to be demonstrated.


Subject(s)
Brucella melitensis/genetics , Brucella melitensis/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Gene Expression Regulation, Bacterial/physiology , Protein Array Analysis , Repressor Proteins/genetics , Signal Transduction , Time Factors , Trans-Activators/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...