Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Cancer Res ; 14(9): 2775-84, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18451245

ABSTRACT

PURPOSE: We generated a humanized antibody, HuLuc63, which specifically targets CS1 (CCND3 subset 1, CRACC, and SLAMF7), a cell surface glycoprotein not previously associated with multiple myeloma. To explore the therapeutic potential of HuLuc63 in multiple myeloma, we examined in detail the expression profile of CS1, the binding properties of HuLuc63 to normal and malignant cells, and the antimyeloma activity of HuLuc63 in preclinical models. EXPERIMENTAL DESIGN: CS1 was analyzed by gene expression profiling and immunohistochemistry of multiple myeloma samples and numerous normal tissues. HuLuc63-mediated antimyeloma activity was tested in vitro in antibody-dependent cellular cytotoxicity (ADCC) assays and in vivo using the human OPM2 xenograft model in mice. RESULTS: CS1 mRNA was expressed in >90% of 532 multiple myeloma cases, regardless of cytogenetic abnormalities. Anti-CS1 antibody staining of tissues showed strong staining of myeloma cells in all plasmacytomas and bone marrow biopsies. Flow cytometric analysis of patient samples using HuLuc63 showed specific staining of CD138+ myeloma cells, natural killer (NK), NK-like T cells, and CD8+ T cells, with no binding detected on hematopoietic CD34+ stem cells. HuLuc63 exhibited significant in vitro ADCC using primary myeloma cells as targets and both allogeneic and autologous NK cells as effectors. HuLuc63 exerted significant in vivo antitumor activity, which depended on efficient Fc-CD16 interaction as well as the presence of NK cells in the mice. CONCLUSIONS: These results suggest that HuLuc63 eliminates myeloma cells, at least in part, via NK-mediated ADCC and shows the therapeutic potential of targeting CS1 with HuLuc63 for the treatment of multiple myeloma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Lymphocyte Subsets/metabolism , Multiple Myeloma/drug therapy , Plasma Cells/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , Killer Cells, Natural/immunology , Lymphocyte Subsets/cytology , Mice , Mice, SCID , Multiple Myeloma/immunology , Plasma Cells/cytology , Receptors, Immunologic/genetics , Signaling Lymphocytic Activation Molecule Family , Xenograft Model Antitumor Assays
2.
Exp Mol Med ; 36(3): 251-8, 2004 Jun 30.
Article in English | MEDLINE | ID: mdl-15272237

ABSTRACT

Hypertension and anemia may be causes of left ventricular hypertrophy (LVH) in uremia but the molecular mechanism is not known. Uremia was induced in male Spraugue Dawley rats by 5/6 nephrectomy. The following groups of rats were studied for 6 weeks; uremic rats (U) fed ad. lib., control rats (C) pair-fed with U, U rats given hydralazine (100 mg/kg/day) (UH), U rats given erythropoietin (48 U/kg/week, i.p.) (UE). Both diastolic and mean arterial pressures are higher (P < 0.01) in U and UE compared with C whereas both pressures in UH were normalized. Hemoglobin in U was lower than in C, and was normalized in UE. U, UH and UE had higher heart weight/body weight ratios (HW/BW) as well as left ventricular weight/body weight ratios (LV/BW) compared with C (P < 0.01). Compared with U, UH has lower HW/BW and LV/BW (P < 0.05) and UE has normal HW/BW but lower LV/BW than U (P < 0.05). To see if the gene expression in uremic LVH is similar to that described in pressure overload LVH in which mRNA levels of angiotensin converting enzyme (ACE), transforming growth factor-beta1 (TGF-beta1), atrial natriuretic factors (ANF) and skeletal a- actin were increased, we measured these mRNA levels by Northern analysis. TGF-beta1, ACE and alpha-actin mRNA levels were not changed in all 4 groups. ANF mRNA in U and UE was increased 3 fold over C, and normalized in UH. Treatment of anemia with erythropoietin improved uremic LVH but did not change ANF mRNA; whereas treatment of hypertension with hydralazine normalized ANF mRNA but did not completely correct uremic LVH. Thus, gene expression in uremic LVH is distinct from that in pressure-overload LVH, suggesting that other unidentified factor(s) might be involved in uremic LVH.


Subject(s)
Anemia/complications , Gene Expression , Hypertension/complications , Hypertrophy, Left Ventricular/genetics , Uremia/genetics , Actins/genetics , Actins/metabolism , Anemia/drug therapy , Anemia/metabolism , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Heart Ventricles/chemistry , Heart Ventricles/drug effects , Heart Ventricles/pathology , Hydralazine/pharmacology , Hydralazine/therapeutic use , Hypertension/drug therapy , Hypertension/metabolism , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/metabolism , Male , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/analysis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1 , Uremia/etiology , Uremia/metabolism
3.
Am J Pathol ; 162(6): 1881-93, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12759245

ABSTRACT

Angiogenesis is a key aspect of the dynamic changes occurring during the normal ovarian cycle. Hyperplasia and hypervascularity of the ovarian theca interna and stroma are also prominent features of the polycystic ovary syndrome (PCOS), a leading cause of infertility. Compelling evidence indicated that vascular endothelial growth factor (VEGF) is a key mediator of the cyclical corpus luteum angiogenesis. However, the nature of the factor(s) that mediate angiogenesis in PCOS is less clearly understood. Endocrine gland-derived (EG)-VEGF has been recently identified as an endothelial cell mitogen with selectivity for the endothelium of steroidogenic glands and is expressed in normal human ovaries. In the present study, we compared the expression of EG-VEGF and VEGF mRNA in a series of 13 human PCOS and 13 normal ovary specimens by in situ hybridization. EG-VEGF expression in normal ovaries is dynamic and generally complementary to VEGF expression in both follicles and corpora lutea. A particularly high expression of EG-VEGF was detected in the Leydig-like hilus cells found in the highly vascularized ovarian hilus. In PCOS ovaries, we found strong expression of EG-VEGF mRNA in theca interna and stroma in most of the specimens examined, thus spatially related to the new blood vessels. In contrast, VEGF mRNA expression was most consistently associated with the granulosa cell layer and sometimes the theca, but rarely with the stroma. These findings indicate that both EG-VEGF and VEGF are expressed in PCOS ovaries, but in different cell types at different stages of differentiation, thus suggesting complementary functions for the two factors in angiogenesis and possibly cyst formation.


Subject(s)
Angiogenesis Inducing Agents/genetics , Gene Expression Profiling , Ovary/metabolism , Polycystic Ovary Syndrome/genetics , Adult , Cell Differentiation/genetics , Corpus Luteum/metabolism , Endothelial Growth Factors/genetics , Female , Gastrointestinal Hormones/genetics , Humans , In Situ Hybridization , Intercellular Signaling Peptides and Proteins/genetics , Lymphokines/genetics , Ovarian Follicle/metabolism , Polycystic Ovary Syndrome/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived , Vascular Endothelial Growth Factors
4.
Physiol Genomics ; 10(1): 13-20, 2002 Jul 12.
Article in English | MEDLINE | ID: mdl-12118101

ABSTRACT

The objective of this study was to use gene expression data from well-defined cell culture models, in combination with expression data from diagnostic samples of human diseased tissues, to identify potential therapeutic targets and markers of disease. Using Affymetrix oligonucleotide array technology, we identified a common profile of genes upregulated during endothelial morphogenesis into tubelike structures in three in vitro models of angiogenesis. Rigorous data selection criteria were used to identify a list of over 1,000 genes whose expression was increased more than twofold over baseline at either 4, 8, 24, 40 or 50 h. To further refine and prioritize this list, we used standard bioinformatic algorithms to identify potential transmembrane and secreted proteins. We then overlapped this gene set with genes upregulated in colon tumors vs. normal colon, resulting in a subset of 128 genes in common with our endothelial list. We removed from this list those genes expressed in 6 different colon tumor lines, resulting in a list of 24 putative, vascular-specific angiogenesis-associated genes. Three genes, gp34, stanniocalcin-1 (STC-1), and GA733-1, were expressed at levels 10-fold or more in colon tumors compared with normal mucosa. We validated the vascular-specific expression of one of these genes, STC-1, by in situ hybridization. The ability to combine in vitro and in vivo data sets should permit one to identify putative angiogenesis target genes in various tumors, chronic inflammation, and other disorders where therapeutic manipulation of angiogenesis is a desirable treatment modality.


Subject(s)
Databases, Genetic , Gene Expression Profiling/methods , Neovascularization, Pathologic/genetics , Neovascularization, Physiologic/genetics , Animals , Cell Line , Endothelium, Vascular/chemistry , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Gene Targeting/methods , Humans , Male , Oligonucleotide Array Sequence Analysis/methods , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured , Umbilical Veins
SELECTION OF CITATIONS
SEARCH DETAIL