Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Mol Neurosci ; 16: 1201015, 2023.
Article in English | MEDLINE | ID: mdl-37614699

ABSTRACT

Introduction: Mitochondrial dysfunction is observed in Alzheimer's disease (AD). Altered mitochondrial respiration, cytochrome oxidase (COX) Vmax, and mitophagy are observed in human subjects and animal models of AD. Models derived from induced pluripotent stem cells (iPSCs) may not recapitulate these phenotypes after reprogramming from differentiated adult cells. Methods: We examined mitochondrial function across iPSC derived models including cerebral organoids, forebrain neurons, and astrocytes. iPSCs were reprogrammed from fibroblasts either from the University of Kansas Alzheimer's Disease Research Center (KU ADRC) cohort or purchased from WiCell. A total of four non-demented and four sporadic AD iPSC lines were examined. Models were subjected to mitochondrial respiration analysis using Seahorse XF technology, spectrophotometric cytochrome oxidase (COX) Vmax assays, fluorescent assays to determine mitochondrial mass, mitochondrial membrane potential, calcium, mitochondrial dynamics, and mitophagy levels. AD pathological hallmarks were also measured. Results: iPSC derived neurons and cerebral organoids showed reduced COX Vmax in AD subjects with more profound defects in the female cohort. These results were not observed in astrocytes. iPSC derived neurons and astrocytes from AD subjects had reduced mitochondrial respiration parameters with increased glycolytic flux. iPSC derived neurons and astrocytes from AD subjects showed sex dependent effects on mitochondrial membrane potential, mitochondrial superoxide production, and mitochondrial calcium. iPSC derived neurons from AD subjects had reduced mitochondrial localization in lysosomes with sex dependent effects on mitochondrial mass, while iPSC derived astrocytes from female AD subjects had increased mitochondrial localization to lysosomes. Both iPSC derived neurons and astrocytes from AD subjects showed altered mitochondrial dynamics. iPSC derived neurons had increased secreted Aß, and sex dependent effects on total APP protein expression. iPSC derived astrocytes showed sex dependent changes in GFAP expression in AD derived cells. Conclusion: Overall, iPSC derived models from AD subjects show mitochondrial phenotypes and AD pathological hallmarks in a cell type and sex dependent manner. These results highlight the importance of sex as a biological variable in cell culture studies.

2.
Acad Med ; 97(8): 1226-1235, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35476779

ABSTRACT

PURPOSE: The education of health care professionals is a contributing factor to persistent health disparities. Although medical students are expected to understand racism, classism, and other social and structural drivers of health (SDH), standardization and best practices for teaching these concepts are lacking. Some medical schools are adopting social justice curricula (SJC) that prioritize health equity in teaching students to recognize SDH and preparing them to address the consequent health disparities. This systematic review sought to evaluate how these schools have integrated SJC into their core teaching; the criteria they have used to measure success and to what extent these criteria are met; and best practices in planning, implementing, and evaluating SJC. METHOD: The authors searched 7 databases for English-language studies published between January 2000 and April 2020, reporting on longitudinally integrated SJC at U.S. medical schools intended for all students. Quantitative and qualitative outcomes were synthesized and summarized. RESULTS: Searches identified 3,137 articles, of which 11 met inclusion criteria. Results demonstrated schools use a variety of teaching methods over a wide range of didactic hours to teach SJC concepts. Surveys and objective tests indicated students in SJC are generally satisfied and demonstrated improved knowledge and skills related to understanding and mitigating SDH, although findings related to changes in attitudes were equivocal. Evaluations at graduation and in residency demonstrated students who experience SJC are more prepared than their peers to work with patients who are underserved. Best practices in SJC included addressing the hidden curriculum, considering medical mistrust, and using tools like the Racial Justice Report Card and Tool for Assessing Cultural Competence Training. CONCLUSIONS: These findings indicated SJC can prepare students to better address the root causes of health disparities. Future research should consider the long-term influences of these curricula on students, patients, and the community.


Subject(s)
Students, Medical , Curriculum , Humans , Schools, Medical , Social Justice/education , Trust
3.
Methods Mol Biol ; 2066: 217-234, 2020.
Article in English | MEDLINE | ID: mdl-31512220

ABSTRACT

Induced pluripotent stem (iPS) cells are important tools for studying differentiation and for use in patient-specific disease modeling. We present a detailed method for the reprogramming of primary human fibroblasts to induced pluripotent stem cells using Sendai virus. These procedures allow for the efficient generation of multiple high-quality feeder-independent iPS cell lines for a given human fibroblast line. The iPS cell lines generated by this protocol can be used in a variety of differentiation and gene expression studies, as well as in genetic manipulations.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Primary Cell Culture/methods , Sendai virus/genetics , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Fibroblasts/cytology , Humans , Induced Pluripotent Stem Cells/virology
4.
Development ; 146(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31488508

ABSTRACT

RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.


Subject(s)
Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Mammals/embryology , Mammals/metabolism , Animals , Gene Expression Regulation, Developmental , Genetic Loci , Hematopoiesis/physiology , Homeostasis/physiology , Humans , Mice , Neoplasms/metabolism
6.
Cancer Cell ; 34(4): 626-642.e8, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30300583

ABSTRACT

Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML.


Subject(s)
Cell Cycle Checkpoints/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Cyclin D2/genetics , Animals , Cell Line, Tumor , Chromosomes, Human, Pair 21/genetics , Gene Expression Regulation, Leukemic/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Male , Mice , Oncogene Proteins, Fusion/genetics , Oncogenes/genetics , Translocation, Genetic/genetics
7.
Cell Transplant ; 27(4): 654-665, 2018 04.
Article in English | MEDLINE | ID: mdl-29845869

ABSTRACT

Neonatal hyperbilirubinemia targets specific brain regions and can lead to kernicterus. One of the most debilitating symptoms of kernicterus is dystonia, which results from bilirubin toxicity to the globus pallidus (GP). Stem cell transplantation into the GP to replace lost neurons and restore basal ganglia circuits function is a potential therapeutic strategy to treat dystonia in kernicterus. In this study we transplanted human medial ganglionic eminence (MGE)-like neural progenitor cells (NPCs) that we differentiated into a primarily gamma-aminobutyric acid (GABA)ergic phenotype, into the GP of non-immunosuppressed jaundiced (jj) and non-jaundiced (Nj) rats. We assessed the survival and development of graft cells at three time-points post-transplantation. While grafted MGE-like NPCs survived and generated abundant fibers in both jj and Nj brains, NPC survival was greater in the jj brain. These results were consistent with our previous finding that excitatory spinal interneuron-like NPCs exhibited a higher survival rate in the jj brain than in the Nj brain. Our findings further support our hypothesis that slightly elevated bilirubin levels in the jj brain served as an antioxidant and immunosuppressant to protect the transplanted cells. We also identified graft fibers growing toward brain regions that receive projections from the GP, as well as host fibers extending toward the graft. These promising findings suggest that MGE-like NPCs may have the capacity to restore the circuits connecting GP and other nuclei.


Subject(s)
Jaundice/therapy , Median Eminence/cytology , Neural Stem Cells/transplantation , Animals , Bilirubin/metabolism , Cell Lineage , Cell Survival , Female , Human Embryonic Stem Cells/cytology , Humans , Jaundice/pathology , Male , Neural Stem Cells/cytology , Neuronal Outgrowth , Parvalbumins/metabolism , Rats, Gunn , Time Factors
8.
PLoS Genet ; 14(1): e1007127, 2018 01.
Article in English | MEDLINE | ID: mdl-29300724

ABSTRACT

In recent years, highly detailed characterization of adult bone marrow (BM) myeloid progenitors has been achieved and, as a result, the impact of somatic defects on different hematopoietic lineage fate decisions can be precisely determined. Fetal liver (FL) hematopoietic progenitor cells (HPCs) are poorly characterized in comparison, potentially hindering the study of the impact of genetic alterations on midgestation hematopoiesis. Numerous disorders, for example infant acute leukemias, have in utero origins and their study would therefore benefit from the ability to isolate highly purified progenitor subsets. We previously demonstrated that a Runx1 distal promoter (P1)-GFP::proximal promoter (P2)-hCD4 dual-reporter mouse (Mus musculus) model can be used to identify adult BM progenitor subsets with distinct lineage preferences. In this study, we undertook the characterization of the expression of Runx1-P1-GFP and P2-hCD4 in FL. Expression of P2-hCD4 in the FL immunophenotypic Megakaryocyte-Erythroid Progenitor (MEP) and Common Myeloid Progenitor (CMP) compartments corresponded to increased granulocytic/monocytic/megakaryocytic and decreased erythroid specification. Moreover, Runx1-P2-hCD4 expression correlated with several endogenous cell surface markers' expression, including CD31 and CD45, providing a new strategy for prospective identification of highly purified fetal myeloid progenitors in transgenic mouse models. We utilized this methodology to compare the impact of the deletion of either total RUNX1 or RUNX1C alone and to determine the fetal HPCs lineages most substantially affected. This new prospective identification of FL progenitors therefore raises the prospect of identifying the underlying gene networks responsible with greater precision than previously possible.


Subject(s)
Cell Lineage/genetics , Hematopoietic Stem Cells/cytology , Myeloid Progenitor Cells/cytology , Animals , Bone Marrow/embryology , Cell Differentiation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Disease Models, Animal , Granulocytes/cytology , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Humans , Liver/cytology , Liver/embryology , Liver/metabolism , Megakaryocytes/cytology , Mice , Mice, Transgenic , Monocytes/cytology , Prospective Studies
9.
Blood ; 130(3): 271-284, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28490570

ABSTRACT

RUNX1 is crucial for the regulation of megakaryocyte specification, maturation, and thrombopoiesis. Runx1 possesses 2 promoters: the distal P1 and proximal P2 promoters. The major protein isoforms generated by P1 and P2 are RUNX1C and RUNX1B, respectively, which differ solely in their N-terminal amino acid sequences. RUNX1C is the most abundantly expressed isoform in adult hematopoiesis, present in all RUNX1-expressing populations, including the cKit+ hematopoietic stem and progenitor cells. RUNX1B expression is more restricted, being highly expressed in the megakaryocyte lineage but downregulated during erythropoiesis. We generated a Runx1 P1 knock-in of RUNX1B, termed P1-MRIPV This mouse line lacks RUNX1C expression but has normal total RUNX1 levels, solely comprising RUNX1B. Using this mouse line, we establish a specific requirement for the P1-RUNX1C isoform in megakaryopoiesis, which cannot be entirely compensated for by RUNX1B overexpression. P1 knock-in megakaryocyte progenitors have reduced proliferative capacity and undergo increased cell death, resulting in thrombocytopenia. P1 knock-in premegakaryocyte/erythroid progenitors demonstrate an erythroid-specification bias, evident from increased erythroid colony-forming ability and decreased megakaryocyte output. At a transcriptional level, multiple erythroid-specific genes are upregulated and megakaryocyte-specific transcripts are downregulated. In addition, proapoptotic pathways are activated in P1 knock-in premegakaryocyte/erythroid progenitors, presumably accounting for the increased cell death in the megakaryocyte progenitor compartment. Unlike in the conditional adult Runx1 null models, megakaryocytic maturation is not affected in the P1 knock-in mice, suggesting that RUNX1B can regulate endomitosis and thrombopoiesis. Therefore, despite the high degree of structural similarity, RUNX1B and RUNX1C isoforms have distinct and specific roles in adult megakaryopoiesis.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Megakaryocyte Progenitor Cells/metabolism , Megakaryocytes/metabolism , RNA, Messenger/genetics , Thrombocytopenia/genetics , Thrombopoiesis/genetics , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Death , Cell Lineage/genetics , Cell Proliferation , Core Binding Factor Alpha 2 Subunit/metabolism , Flow Cytometry , Gene Expression Regulation , Humans , Immunophenotyping , Megakaryocyte Progenitor Cells/pathology , Megakaryocytes/pathology , Mice , Mice, Transgenic , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
11.
PLoS Genet ; 12(1): e1005814, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26808730

ABSTRACT

The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1 promoter is broadly active in adult hematopoietic stem and progenitor cell (HSPC) populations. By contrast the activity of the proximal P2 promoter is more restricted and its upregulation, in both the immature Lineage- Sca1high cKithigh (LSK) and bipotential Pre-Megakaryocytic/Erythroid Progenitor (PreMegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into "pro-erythroid" and "pro-megakaryocyte" populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated that levels of CD34 expression could substitute for P2 activity to distinguish these two cell populations in wild type (WT) bone marrow (BM). Prospective isolation of these two populations will enable the further investigation of molecular mechanisms involved in megakaryocytic/erythroid (Mk/Ery) cell fate decisions. Having characterized the extensive activity of P1, we utilized a P1-GFP homozygous mouse model to analyze the impact of the complete absence of Runx1 P1 expression in adult mice and observed strong defects in the T cell lineage. Finally, we investigated how the leukemic fusion protein AML1-ETO9a might influence Runx1 promoter usage. Short-term AML1-ETO9a induction in BM resulted in preferential P2 upregulation, suggesting its expression may be important to establish a pre-leukemic environment.


Subject(s)
Cell Lineage/genetics , Core Binding Factor Alpha 2 Subunit/biosynthesis , Hematopoiesis/genetics , Hematopoietic Stem Cells , Animals , Cell Differentiation/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Embryo, Mammalian , Gene Expression Regulation, Developmental , Megakaryocytes/cytology , Mice , Promoter Regions, Genetic , T-Lymphocytes/metabolism
12.
Blood ; 112(7): 2738-49, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18625887

ABSTRACT

The transcription factor GATA1 coordinates timely activation and repression of megakaryocyte gene expression. Loss of GATA1 function results in excessive megakaryocyte proliferation and disordered terminal platelet maturation, leading to thrombocytopenia and leukemia in patients. The mechanisms by which GATA1 does this are unclear. We have used in vivo biotinylated GATA1 to isolate megakaryocyte GATA1-partner proteins. Here, several independent approaches show that GATA1 interacts with several proteins in the megakaryocyte cell line L8057 and in primary megakaryocytes. They include FOG1, the NURD complex, the pentameric complex containing SCL/TAL-1, the zinc-finger regulators GFI1B and ZFP143, and the corepressor ETO2. Knockdown of ETO2 expression promotes megakaryocyte differentiation and enhances expression of select genes expressed in terminal megakaryocyte maturation, eg, platelet factor 4 (Pf4). ETO2-dependent direct repression of the Pf4 proximal promoter is mediated by GATA-binding sites and an E-Box motif. Consistent with this, endogenous ETO2, GATA1, and the SCL pentameric complex all specifically bind the promoter in vivo. Finally, as ETO2 expression is restricted to immature megakaryocytes, these data suggest that ETO2 directly represses inappropriate early expression of a subset of terminally expressed megakaryocyte genes by binding to GATA1 and SCL.


Subject(s)
Cell Differentiation , GATA1 Transcription Factor/metabolism , Megakaryocytes/cytology , Megakaryocytes/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Biotinylation , Cell Line , E-Box Elements/genetics , Humans , Immunoprecipitation , Mice , Molecular Sequence Data , Multiprotein Complexes/isolation & purification , Multiprotein Complexes/metabolism , Platelet Factor 4/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Protein Transport , Reproducibility of Results , Streptavidin/metabolism , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...