Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 10(3): 243-247, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891120

ABSTRACT

The ionotropic glutamate receptor GluA2 is considered to be an attractive target for positive allosteric modulation for the development of pharmacological tools or cognitive enhancers. Here, we report a detailed structural characterization of two recently reported dimeric positive allosteric modulators, TDPAM01 and TDPAM02, with nanomolar potency at GluA2. Using X-ray crystallography, TDPAM01 and TDPAM02 were crystallized in the ligand-binding domain of the GluA2 flop isoform as well as in the flip-like mutant N775S and the preformed dimer L504Y-N775S. In all structures, one modulator molecule binds at the dimer interface with two characteristic hydrogen bonds being formed from the modulator to Pro515. Whereas the GluA2 dimers and modulator binding mode are similar when crystallized in the presence of l-glutamate, the shape of the binding site differs when no l-glutamate is present. TDPAM02 has no effect on domain closure in both apo and l-glutamate bound GluA2 dimers compared to structures without modulator.

2.
J Med Chem ; 61(12): 5279-5291, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29775064

ABSTRACT

The present study describes the identification of highly potent dimeric 1,2,4-benzothiadiazine 1,1-dioxide (BTD)-type positive allosteric modulators of the AMPA receptors (AMPApams) obtained by linking two monomeric BTD scaffolds through their respective 6-positions. Using previous X-ray data from monomeric BTDs cocrystallized with the GluA2 ligand-binding domain (LBD), a molecular modeling approach was performed to predict the preferred dimeric combinations. Two 6,6-ethylene-linked dimeric BTD compounds (16 and 22) were prepared and evaluated as AMPApams on HEK293 cells expressing GluA2o( Q) (calcium flux experiment). These compounds were found to be about 10,000 times more potent than their respective monomers, the most active dimeric compound being the bis-4-cyclopropyl-substituted compound 22 [6,6'-(ethane-1,2-diyl)bis(4-cyclopropyl-3,4-dihydro-2 H-1,2,4-benzothiadiazine 1,1-dioxide], with an EC50 value of 1.4 nM. As a proof of concept, the bis-4-methyl-substituted dimeric compound 16 (EC50 = 13 nM) was successfully cocrystallized with the GluA2o-LBD and was found to occupy the two BTD binding sites at the LBD dimer interface.


Subject(s)
Allosteric Regulation/drug effects , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Benzothiadiazines/chemistry , Binding Sites , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Dimerization , Drug Design , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Domains
3.
J Med Chem ; 61(1): 251-264, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29256599

ABSTRACT

We report here the synthesis of 7-phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides and their evaluation as AMPA receptor positive allosteric modulators (AMPApams). The impact of substitution on the phenoxy ring and on the nitrogen atom at the 4-position was examined. At GluA2(Q) expressed in HEK293 cells (calcium flux experiment), the most potent compound was 11m (4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, EC50 = 2.0 nM). The Hill coefficient in the screening and the shape of the dimerization curve in small-angle X-ray scattering (SAXS) experiments using isolated GluA2 ligand-binding domain (GluA2-LBD) are consistent with binding of one molecule of 11m per dimer interface, contrary to most benzothiadiazine dioxides developed to date. This observation was confirmed by the X-ray structure of 11m bound to GluA2-LBD and by NMR. This is the first benzothiadiazine dioxide AMPApam to reach the nanomolar range.


Subject(s)
Benzothiadiazines/chemistry , Benzothiadiazines/pharmacology , Receptors, AMPA/metabolism , Allosteric Regulation/drug effects , Drug Design , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...