Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 99(5): 2609-12, 2002 Mar 05.
Article in English | MEDLINE | ID: mdl-11854461

ABSTRACT

Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud-chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss processes, such as chlorine activation and denitrification, in a cold winter within the current range of natural variability. Several studies indicate that severe denitrification can increase Arctic ozone loss by up to 30%. We show large PSC particles that cause denitrification in a nonvolcanic stratosphere cannot efficiently form in a volcanic environment. However, volcanic aerosols, when present at low altitudes, where Arctic PSCs cannot form, can extend the vertical range of chemical ozone loss in the lower stratosphere. Chemical processing on volcanic aerosols over a 10-km altitude range could increase the current levels of springtime column ozone loss by up to 70% independent of denitrification. Climate models predict that the lower stratosphere is cooling as a result of greenhouse gas built-up in the troposphere. The magnitude of column ozone loss calculated here for the 1999--2000 Arctic winter, in an assumed volcanic state, is similar to that projected for a colder future nonvolcanic stratosphere in the 2010 decade.

2.
Science ; 291(5513): 2591-4, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11283368

ABSTRACT

Homogeneous freezing of nitric acid hydrate particles can produce a polar freezing belt in either hemisphere that can cause denitrification. Computed denitrification profiles for one Antarctic and two Arctic cold winters are presented. The vertical range over which denitrification occurs is normally quite deep in the Antarctic but limited in the Arctic. A 4 kelvin decrease in the temperature of the Arctic stratosphere due to anthropogenic and/or natural effects can trigger the occurrence of widespread severe denitrification. Ozone loss is amplified in a denitrified stratosphere, so the effects of falling temperatures in promoting denitrification must be considered in assessment studies of ozone recovery trends.

SELECTION OF CITATIONS
SEARCH DETAIL