Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638227

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has emerged as an attractive strategy for cancer immunotherapy. Despite remarkable success for hematological malignancies, excessive activity and poor control of CAR T cells can result in severe adverse events requiring control strategies to improve safety. This work illustrates the feasibility of a zinc finger-based inducible switch system for transcriptional regulation of an anti-CD20 CAR in primary T cells providing small molecule-inducible control over therapeutic functions. We demonstrate time- and dose-dependent induction of anti-CD20 CAR expression and function with metabolites of the clinically-approved drug tamoxifen, and the absence of background CAR activity in the non-induced state. Inducible CAR T cells executed fine-tuned cytolytic activity against target cells both in vitro and in vivo, whereas CAR-related functions were lost upon drug discontinuation. This zinc finger-based transcriptional control system can be extended to other therapeutically important CARs, thus paving the way for safer cellular therapies.

2.
Oncoimmunology ; 10(1): 2003532, 2021.
Article in English | MEDLINE | ID: mdl-35686214

ABSTRACT

Chimeric antigen receptor (CAR)-T therapy holds great promise to sustainably improve cancer treatment. However, currently, a broad applicability of CAR-T cell therapies is hampered by limited CAR-T cell versatility and tractability and the lack of exclusive target antigens to discriminate cancerous from healthy tissues. To achieve temporal and qualitative control on CAR-T function, we engineered the Adapter CAR (AdCAR) system. AdCAR-T are redirected to surface antigens via biotin-labeled adapter molecules in the context of a specific linker structure, referred to as Linker-Label-Epitope. AdCAR-T execute highly specific and controllable effector function against a multiplicity of target antigens. In mice, AdCAR-T durably eliminate aggressive lymphoma. Importantly, AdCAR-T might prevent antigen evasion by combinatorial simultaneous or sequential targeting of multiple antigens and are capable to identify and differentially lyse cancer cells by integration of adapter molecule-mediated signals based on multiplex antigen expression profiles. In consequence the AdCAR technology enables controllable, flexible, combinatorial, and selective targeting.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Immunotherapy, Adoptive , Mice , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Technology
3.
Proc Natl Acad Sci U S A ; 112(6): E546-55, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25624468

ABSTRACT

The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.


Subject(s)
B-Lymphocyte Subsets/immunology , Germinal Center/immunology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Inflammation/immunology , Analysis of Variance , B-Lymphocyte Subsets/metabolism , Cell Differentiation/immunology , Flow Cytometry , Gene Expression Profiling , Humans , Immunoglobulin D/metabolism , Immunoglobulin M/metabolism , Microscopy, Fluorescence , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...