Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Cell Dev Biol ; 10: 913118, 2022.
Article in English | MEDLINE | ID: mdl-35669511

ABSTRACT

Gender differences are a common finding in osteoarthritis (OA). This may result from a differential response of males and females to endoplasmic reticulum (ER) stress in articular chondrocytes. We have previously described that ER stress in cartilage-specific ERp57 KO mice (ERp57 cKO) favors the development of knee OA, since this stress condition cannot be adequately compensated in articular chondrocytes with increasing age leading to the induction of apoptotic cell death and subsequent cartilage degeneration. The aim of this study was to enlighten gender-specific differences in ER stress, apoptosis, and OA development in ERp57 cKO mice. The analyses were extended by in vitro studies on the influence of estradiol in CRISPR/Cas9-generated C28/I2 ERp57 knock out (KO) and WT cells. ER stress was evaluated by immunofluorescence analysis of the ER stress markers calnexin (Cnx) and binding-immunoglobulin protein (BiP), also referred to as glucose-regulating protein 78 (GRP78) in vivo and in vitro. Apoptotic cell death was investigated by a commercially available cell death detection ELISA and TUNEL assay. OA development in mice was analyzed by toluidine blue staining of paraffin-embedded knee cartilage sections and quantified by OARSI-Scoring. Cell culture studies exhibited a reduction of ER stress and ER stress-induced apoptosis in C28/I2 cells in presence of physiological estradiol concentrations. This is consistent with a slower increase in age-related ER stress and a reduced number of apoptotic chondrocytes in female mice compared to male littermates contributing to a reduced osteoarthritic cartilage degeneration in female mice. Taken together, this study demonstrates that the female sex hormone estradiol can reduce ER stress and ER stress-induced apoptosis in articular chondrocytes, thus minimizing critical events favoring osteoarthritic cartilage degeneration. Therefore, the inhibition of ER stress through a modulation of effects induced by female sex hormones appears to be attractive for OA therapy.

2.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073402

ABSTRACT

The development of scaffolds mimicking the extracellular matrix containing bioactive substances has great potential in tissue engineering and wound healing applications. This study investigates melatonin-a methoxyindole present in almost all biological systems. Melatonin is a bioregulator in terms of its potential clinical importance for future therapies of cutaneous diseases. Mammalian skin is not only a prominent melatonin target, but also produces and rapidly metabolizes the multifunctional methoxyindole to biologically active metabolites. In our methodology, chitosan/collagen (CTS/Coll)-contained biomaterials are blended with melatonin at different doses to fabricate biomimetic hybrid scaffolds. We use rat tail tendon- and Salmo salar fish skin-derived collagens to assess biophysical and cellular properties by (i) Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), (ii) thermogravimetric analysis (TG), (iii) scanning electron microscope (SEM), and (iv) proliferation ratio of cutaneous cells in vitro. Our results indicate that melatonin itself does not negatively affect biophysical properties of melatonin-immobilized hybrid scaffolds, but it induces a pronounced elevation of cell viability within human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF), and reference melanoma cells. These results demonstrate that this indoleamine accelerates re-epithelialization. This delivery is a promising technique for additional explorations in future dermatotherapy and protective skin medicine.


Subject(s)
Bandages , Chitosan/chemistry , Collagen/chemistry , Dermis/metabolism , Epidermis/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Melatonin , Cell Line , Dermis/pathology , Drug Evaluation, Preclinical , Epidermis/pathology , Fibroblasts/pathology , Humans , Keratinocytes/pathology , Melatonin/chemistry , Melatonin/pharmacokinetics , Melatonin/pharmacology
3.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008608

ABSTRACT

Ageing or obesity are risk factors for protein aggregation in the endoplasmic reticulum (ER) of chondrocytes. This condition is called ER stress and leads to induction of the unfolded protein response (UPR), which, depending on the stress level, restores normal cell function or initiates apoptotic cell death. Here the role of ER stress in knee osteoarthritis (OA) was evaluated. It was first tested in vitro and in vivo whether a knockout (KO) of the protein disulfide isomerase ERp57 in chondrocytes induces sufficient ER stress for such analyses. ER stress in ERp57 KO chondrocytes was confirmed by immunofluorescence, immunohistochemistry, and transmission electron microscopy. Knee joints of wildtype (WT) and cartilage-specific ERp57 KO mice (ERp57 cKO) were analyzed by indentation-type atomic force microscopy (IT-AFM), toluidine blue, and immunofluorescence/-histochemical staining. Apoptotic cell death was investigated by a TUNEL assay. Additionally, OA was induced via forced exercise on a treadmill. ER stress in chondrocytes resulted in a reduced compressive stiffness of knee cartilage. With ER stress, 18-month-old mice developed osteoarthritic cartilage degeneration with osteophyte formation in knee joints. These degenerative changes were preceded by apoptotic death in articular chondrocytes. Young mice were not susceptible to OA, even when subjected to forced exercise. This study demonstrates that ER stress induces the development of age-related knee osteoarthritis owing to a decreased protective function of the UPR in chondrocytes with increasing age, while apoptosis increases. Therefore, inhibition of ER stress appears to be an attractive therapeutic target for OA.


Subject(s)
Chondrocytes/metabolism , Endoplasmic Reticulum Stress , Knee Joint/metabolism , Osteoarthritis, Knee/metabolism , Protein Disulfide-Isomerases , Animals , Apoptosis , Cell Line , Chondrocytes/physiology , Humans , Knee Joint/pathology , Male , Mice , Mice, Knockout , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/physiopathology , Unfolded Protein Response
4.
Cell Signal ; 78: 109880, 2021 02.
Article in English | MEDLINE | ID: mdl-33307190

ABSTRACT

In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.


Subject(s)
Apoptosis , Cartilage/metabolism , Chondrocytes/metabolism , Endoplasmic Reticulum Stress , Osteoarthritis/metabolism , Signal Transduction , Animals , Cartilage/pathology , Chondrocytes/pathology , Humans , Osteoarthritis/pathology
5.
Stroke ; 51(5): 1624-1628, 2020 05.
Article in English | MEDLINE | ID: mdl-32192404

ABSTRACT

Background and Purpose- Determinants for molecular and structural instability, that is, impending growth or rupture, of intracranial aneurysms (IAs) remain uncertain. To elucidate this, we endeavored to estimate the actual turnover rates of the main molecular constituent in human IA (collagen) on the basis of radiocarbon (14C) birth dating in relation to IA hemodynamics. Methods- Collagen turnover rates in excised human IA samples were calculated using mathematical modeling of 14C birth dating data of collagen in relation to risk factors and histological markers for collagen maturity/turnover in selected IA. Hemodynamics were simulated using image-based computational fluid dynamics. Correlation, logistic regression, and receiver operating characteristic analyses were performed. Results- Collagen turnover rates were estimated in 46 IA (43 patients); computational fluid dynamics could be performed in 20 IA (20 patients). The mean collagen turnover rate (γ) constituted 126% (±1% error) per year. For patients with arterial hypertension, γ was greater than 2600% annually, whereas γ was distinctly lower with 32% (±1% error) per year for patients without risk factors, such as smoking and hypertension. There was a distinct association between histological presence of rather immature collagen in human IA and the presence of modifiable risk factors. Spatial-temporal averaged wall shear stress predicted rapid collagen turnover (odds ratio, 1.6 [95% CI, 1.0-2.7]). Receiver operating characteristic analysis demonstrated a good test accuracy (area under the curve, 0.798 [95% CI, 0.598-0.998]) for average wall shear stress with a threshold ≥4.9 Pa for rapid collagen turnover. Conclusions- Our data indicate that turnover rates and stability of collagen in human IA are strongly associated with the presence of modifiable risk factors and aneurysmal hemodynamics. These findings underline the importance of strict risk factor modification in patients with unruptured IA. Future should include more detailed risk factor data to establish a more causal understanding of hemodynamics and the rupture risk of individual IA.


Subject(s)
Aneurysm, Ruptured/epidemiology , Collagen Type I/metabolism , Hemodynamics/physiology , Intracranial Aneurysm/metabolism , Adult , Aged , Collagen/metabolism , Female , Humans , Hypertension/epidemiology , Intracranial Aneurysm/epidemiology , Intracranial Aneurysm/pathology , Intracranial Aneurysm/physiopathology , Logistic Models , Male , Middle Aged , Models, Theoretical , ROC Curve , Radiometric Dating , Risk Assessment , Risk Factors , Smoking/epidemiology , Vascular Remodeling
6.
Oxid Med Cell Longev ; 2019: 6404035, 2019.
Article in English | MEDLINE | ID: mdl-31781343

ABSTRACT

OBJECTIVE: The integrity of cartilage depends on the correct synthesis of extracellular matrix (ECM) components. In case of insufficient folding of proteins in the endoplasmic reticulum (ER) of chondrocytes, ECM proteins aggregate, ER stress evolves, and the unfolded protein response (UPR) is initiated. By this mechanism, chondrocytes relieve the stress condition or initiate cell death by apoptosis. Especially persistent ER stress has emerged as a pathogenic mechanism in cartilage diseases, such as chondrodysplasias and osteoarthritis. As pharmacological intervention is not available yet, it is of great interest to understand cartilage ER stress in detail and to develop therapeutics to intervene. METHODS: ERp57-deficient chondrocytes were generated by CRISPR/Cas9-induced KO. ER stress and autophagy were studied on mRNA and protein level as well as by transmission electron microscopy (TEM) in chondrocyte micromass or cartilage explant cultures of ERp57 KO mice. Thapsigargin (Tg), an inhibitor of the ER-residing Ca2+-ATPase, and 4-Phenylbutyric acid (4-PBA), a small molecular chemical chaperone, were applied to induce or inhibit ER stress. RESULTS: Our data reveal that the loss of the protein disulfide isomerase ERp57 is sufficient to induce ER stress in chondrocytes. 4-PBA efficiently diffuses into cartilage explant cultures and diminishes excessive ER stress in chondrocytes dose dependently, no matter if it is induced by ERp57 KO or stimulation with Tg. CONCLUSION: ER-stress-related diseases have different sources; therefore, various targets for therapeutic treatment exist. In the future, 4-PBA may be used alone or in combination with other drugs for the treatment of ER-stress-related skeletal disorders in patients.


Subject(s)
Apoptosis/drug effects , Cartilage/enzymology , Chondrocytes/enzymology , Endoplasmic Reticulum Stress/drug effects , Phenylbutyrates/pharmacology , Protein Disulfide-Isomerases/deficiency , Animals , Apoptosis/genetics , Cartilage/cytology , Cell Line , Chondrocytes/cytology , Endoplasmic Reticulum Stress/genetics , Mice , Mice, Knockout , Protein Disulfide-Isomerases/metabolism
7.
Cancer Cell Int ; 19: 285, 2019.
Article in English | MEDLINE | ID: mdl-31728131

ABSTRACT

BACKGROUND: Both cell adhesion and matrix metalloproteinase (MMP) activity depend on pH at the cell surface. By regulating extracellular juxtamembrane pH, the Na+/H+ exchanger NHE1 plays a significant part in human melanoma (MV3) cell migration and invasion. Because NHE1, besides its pH-regulatory transport function, also serves as a structural element tying the cortical actin cytoskeleton to the plasma membrane, we investigated whether NHE1 affects cortical stiffness of MV3 cells, and how this makes an impact on their invasiveness. METHODS: NHE1 overexpressing MV3 cells were compared to the corresponding mock-transfected control cells. NHE1 expression was verified by Western blotting, cariporide (HOE642) was used to inhibit NHE1 activity, cell stiffness was determined by atomic force microscopy, and F-actin was visualized by phalloidin-staining. Migration on, and invasion of, native and glutaraldehyde-fixed collagen I substrates were analyzed using time-lapse video microscopy and Boyden-chamber assays, respectively. MMP secretion and activity were detected by Western blot and zymography, respectively. MMP activity was inhibited with NNGH. RESULTS: The cortical, but not the bulk stiffness, was significantly higher in NHE1 overexpressing cells. This increase in cortical stiffness was accompanied by a reorganization of the cortical cytoskeleton, i.e. a condensation of F-actin underneath and along the plasma membrane. However, it was not affected by NHE1 inhibition. Nevertheless, actin dynamics is required for cell invasion as demonstrated with the application of cytochalasin D. NHE1 overexpression was associated with an elevated MMP3 secretion and an increase in the invasion of a native matrix. This increase in invasiveness could be antagonized by the MMP inhibitor NNGH. Transmigration through a glutaraldehyde-fixed, indigestible substrate was not affected by NHE1 overexpression. CONCLUSION: NHE1, as a structural element and independently of its transport activity, contributes to the organization of the cortical F-actin meshwork and thus impacts cortical stiffness. Since NHE1 overexpression stimulates MMP3 secretion but does not change transmigration through a fixed substrate, MV3 cell invasion of a native substrate depends on MMP activity rather than on a modifiable cortical stiffness.

8.
Oxid Med Cell Longev ; 2018: 8421394, 2018.
Article in English | MEDLINE | ID: mdl-30647818

ABSTRACT

Cartilage is essential for skeletal development by endochondral ossification. The only cell type within the tissue, the chondrocyte, is responsible for the production of macromolecules for the extracellular matrix (ECM). Before proteins and proteoglycans are secreted, they undergo posttranslational modification and folding in the endoplasmic reticulum (ER). However, the ER folding capacity in the chondrocytes has to be balanced with physiological parameters like energy and oxygen levels. Specific cellular conditions, e.g., a high protein demand, or pathologic situations disrupt ER homeostasis and lead to the accumulation of poorly folded or misfolded proteins. This state is called ER stress and induces a cellular quality control system, the unfolded protein response (UPR), to restore homeostasis. Different mouse models with ER stress in chondrocytes display comparable skeletal phenotypes representing chondrodysplasias. Therefore, ER stress itself seems to be involved in the pathogenesis of these diseases. It is remarkable that chondrodysplasias with a comparable phenotype arise independent from the sources of ER stress, which are as follows: (1) mutations in ECM proteins leading to aggregation, (2) deficiencies in ER chaperones, (3) mutations in UPR signaling factors, or (4) deficiencies in the degradation of aggregated proteins. In any case, the resulting UPR substantially impairs ECM protein synthesis, chondrocyte proliferation, and/or differentiation or regulation of autophagy and apoptosis. Notably, chondrodysplasias arise no matter if single or multiple events are affected. We analyzed cartilage-specific ERp57 knockout mice and demonstrated that the deficiency of this single protein disulfide isomerase, which is responsible for formation of disulfide bridges in ECM glycoproteins, is sufficient to induce ER stress and to cause an ER stress-related bone phenotype. These mice therefore qualify as a novel model for the analysis of ER stress in chondrocytes. They give new insights in ER stress-related short stature disorders and enable the analysis of ER stress in other cartilage diseases, such as osteoarthritis.


Subject(s)
Body Height/genetics , Cartilage Diseases/genetics , Chondrocytes/metabolism , Endoplasmic Reticulum Stress/genetics , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Knockout
9.
Matrix Biol ; 63: 91-105, 2017 11.
Article in English | MEDLINE | ID: mdl-28192200

ABSTRACT

Interactions of cells with supramolecular aggregates of the extracellular matrix (ECM) are mediated, in part, by cell surface receptors of the integrin family. These are important molecular components of cell surface-suprastructures regulating cellular activities in general. A subfamily of ß1-integrins with von Willebrand-factor A-like domains (I-domains) in their α-chains can bind to collagen molecules and, therefore, are considered as important cellular mechano-receptors. Here we show that chondrocytes strongly bind to cartilage collagens in the form of individual triple helical molecules but very weakly to fibrils formed by the same molecules. We also find that chondrocyte integrins α1ß1-, α2ß1- and α10ß1-integrins and their I-domains have the same characteristics. Nevertheless we find integrin binding to mechanically generated cartilage fibril fragments, which also comprise peripheral non-collagenous material. We conclude that cell adhesion results from binding of integrin-containing adhesion suprastructures to the non-collagenous fibril periphery but not to the collagenous fibril cores. The biological importance of the well-investigated recognition of collagen molecules by integrins is unknown. Possible scenarios may include fibrillogenesis, fibril degradation and/or phagocytosis, recruitment of cells to remodeling sites, or molecular signaling across cytoplasmic membranes. In these circumstances, collagen molecules may lack a fibrillar organization. However, other processes requiring robust biomechanical functions, such as fibril organization in tissues, cell division, adhesion, or migration, do not involve direct integrin-collagen interactions.


Subject(s)
Chondrocytes/physiology , Fibrillar Collagens/chemistry , Integrin alpha Chains/chemistry , Integrin alpha1beta1/chemistry , Integrin alpha2beta1/chemistry , Animals , Cartilage, Articular/cytology , Cattle , Cell Adhesion , Cells, Cultured , Chick Embryo , Discoidin Domain Receptors/physiology , Fibrillar Collagens/physiology , Humans , Immobilized Proteins/chemistry , Integrin alpha Chains/physiology , Integrin alpha1beta1/physiology , Integrin alpha2beta1/physiology , Protein Binding
10.
Ann Rheum Dis ; 76(2): 442-449, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27377816

ABSTRACT

OBJECTIVE: Interterritorial regions of articular cartilage matrix are rich in decorin, a small leucine-rich proteoglycan and important structural protein, also involved in many signalling events. Decorin sequesters transforming growth factor ß (TGFß), thereby regulating its activity. Here, we analysed whether increased bioavailability of TGFß in decorin-deficient (Dcn-/-) cartilage leads to changes in biomechanical properties and resistance to osteoarthritis (OA). METHODS: Unchallenged knee cartilage was analysed by atomic force microscopy (AFM) and immunohistochemistry. Active transforming growth factor ß-1 (TGFß1) content within cultured chondrocyte supernatants was measured by ELISA. Quantitative real-time (RT)-PCR was used to analyse mRNA expression of glycosaminoglycan (GAG)-modifying enzymes in C28/I2 cells following TGFß1 treatment. In addition, OA was induced in Dcn-/- and wild-type (WT) mice via forced exercise on a treadmill. RESULTS: AFM analysis revealed a strikingly higher compressive stiffness in Dcn-/- than in WT cartilage. This was accompanied by increased negative charge and enhanced sulfation of GAG chains, but not by alterations in the levels of collagens or proteoglycan core proteins. In addition, decorin-deficient chondrocytes were shown to release more active TGFß1. Increased TGFß signalling led to enhanced Chst11 sulfotransferase expression inducing an increased negative charge density of cartilage matrix. These negative charges might attract more water resulting in augmented compressive stiffness of the tissue. Therefore, decorin-deficient mice developed significantly less OA after forced exercise than WT mice. CONCLUSIONS: Our study demonstrates that the disruption of decorin-restricted TGFß signalling leads to higher stiffness of articular cartilage matrix, rendering joints more resistant to OA. Therefore, the loss of an important structural component can improve cartilage homeostasis.


Subject(s)
Arthritis, Experimental/genetics , Cartilage, Articular/metabolism , Decorin/genetics , Osteoarthritis/genetics , Physical Conditioning, Animal/methods , RNA, Messenger/metabolism , Transforming Growth Factor beta/metabolism , Animals , Arthritis, Experimental/etiology , Arthritis, Experimental/metabolism , Biomechanical Phenomena , Decorin/metabolism , Enzyme-Linked Immunosorbent Assay , Glycosaminoglycans/metabolism , Immunohistochemistry , Mice , Mice, Knockout , Microscopy, Atomic Force , Osteoarthritis/etiology , Osteoarthritis/metabolism , Physical Conditioning, Animal/adverse effects , RNA, Messenger/drug effects , Real-Time Polymerase Chain Reaction , Transforming Growth Factor beta/pharmacology
12.
J Cell Sci ; 128(12): 2374-85, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25967551

ABSTRACT

All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Glypicans/metabolism , Hedgehog Proteins/metabolism , Pancreatic Neoplasms/metabolism , Protein Processing, Post-Translational , Animals , Blotting, Western , Body Patterning , Cell Membrane/metabolism , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Hedgehog Proteins/genetics , Heparitin Sulfate/metabolism , Humans , Mice , Pancreatic Neoplasms/genetics , Proteolysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
13.
J Bone Miner Res ; 30(8): 1481-93, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25704664

ABSTRACT

Long-bone growth by endochondral ossification is cooperatively accomplished by chondrocyte proliferation, hypertrophic differentiation, and appropriate secretion of collagens, glycoproteins, and proteoglycans into the extracellular matrix (ECM). Before folding and entering the secretory pathway, ECM macromolecules in general are subject to extensive posttranslational modification, orchestrated by chaperone complexes in the endoplasmic reticulum (ER). ERp57 is a member of the protein disulfide isomerase (PDI) family and facilitates correct folding of newly synthesized glycoproteins by rearrangement of native disulfide bonds. Here, we show that ERp57-dependent PDI activity is essential for postnatal skeletal growth, especially during the pubertal growth spurt characterized by intensive matrix deposition. Loss of ERp57 in growth plates of cartilage-specific ERp57 knockout mice (ERp57 KO) results in ER stress, unfolded protein response (UPR), reduced proliferation, and accelerated apoptotic cell death of chondrocytes. Together this results in a delay of long-bone growth with the following characteristics: (1) enlarged growth plates; (2) expanded hypertrophic zones; (3) retarded osteoclast recruitment; (4) delayed remodeling of the proteoglycan-rich matrix; and (5) reduced numbers of bone trabeculae. All the growth plate and bone abnormalities, however, become attenuated after the pubertal growth spurt, when protein synthesis is decelerated and, hence, ERp57 function is less essential.


Subject(s)
Cartilage/enzymology , Chondrocytes/enzymology , Endoplasmic Reticulum Stress , Growth Plate/enzymology , Protein Disulfide-Isomerases/metabolism , Sexual Maturation , Animals , Cartilage/pathology , Chondrocytes/pathology , Growth Plate/pathology , Mice , Mice, Knockout , Protein Disulfide-Isomerases/genetics , Unfolded Protein Response
14.
Stroke ; 45(6): 1757-63, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24781080

ABSTRACT

BACKGROUND AND PURPOSE: The chronological development and natural history of cerebral aneurysms (CAs) remain incompletely understood. We used (14)C birth dating of a main constituent of CAs, that is, collagen type I, as an indicator for biosynthesis and turnover of collagen in CAs in relation to human cerebral arteries to investigate this further. METHODS: Forty-six ruptured and unruptured CA samples from 43 patients and 10 cadaveric human cerebral arteries were obtained. The age of collagen, extracted and purified from excised CAs, was estimated using (14)C birth dating and correlated with CA and patient characteristics, including the history of risk factors associated with atherosclerosis and potentially aneurysm growth and rupture. RESULTS: Nearly all CA samples contained collagen type I, which was <5 years old, irrespective of patient age, aneurysm size, morphology, or rupture status. However, CAs from patients with a history of risk factors (smoking or hypertension) contained significantly younger collagen than CAs from patients with no risk factors (mean, 1.6±1.2 versus 3.9±3.3 years, respectively; P=0.012). CAs and cerebral arteries did not share a dominant structural protein, such as collagen type I, which would allow comparison of their collagen turnover. CONCLUSIONS: The abundant amount of relatively young collagen type I in CAs suggests that there is an ongoing collagen remodeling in aneurysms, which is significantly more rapid in patients with risk factors. These findings challenge the concept that CAs are present for decades and that they undergo only sporadic episodes of structural change.


Subject(s)
Cerebral Arteries/metabolism , Cerebral Arteries/pathology , Collagen Type I/metabolism , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/pathology , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Hypertension/metabolism , Hypertension/pathology , Male , Middle Aged , Risk Factors , Smoking/adverse effects , Smoking/metabolism
15.
Transl Stroke Res ; 5(2): 167-73, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24323717

ABSTRACT

The prevalence of unruptured intracranial aneurysms (UIAs) in the general population is up to 3%. Existing epidemiological data suggests that only a small fraction of UIAs progress towards rupture over the lifetime of an individual, but the surrogates for subsequent rupture and the natural history of UIAs are discussed very controversially at present. In case of rupture of an UIA, the case fatality is up to 50%, which therefore continues to stimulate interest in the pathogenesis of cerebral aneurysm formation and progression. Actual data on the chronological development of cerebral aneurysm has been especially difficult to obtain and, until recently, the existing knowledge in this respect is mainly derived from animal or mathematical models or short-term observational studies. Here, we review the current data on cerebral aneurysm formation and progression as well as a novel approach to investigate the developmental chronology of cerebral aneurysms.


Subject(s)
Intracranial Aneurysm/etiology , Intracranial Aneurysm/pathology , Disease Progression , Humans , Models, Theoretical , Risk Factors
16.
Stroke ; 44(3): 799-802, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23329209

ABSTRACT

BACKGROUND AND PURPOSE: There is a controversy about the time span over which cerebral aneurysms develop. In particular, it is unknown whether collagen in ruptured aneurysms undergoes more rapid turnover than in unruptured aneurysms.(14)C birth dating of collagen could be used to address this question. METHODS: Aneurysmal domes from patients undergoing surgical treatment for ruptured or unruptured aneurysms were excised. Aneurysmal collagen was isolated and purified after pepsin digestion. Collagen from mouse tendons served as controls. F(14)C levels in collagen were analyzed by accelerator mass spectrometry and correlated with patient age and aneurysm size. RESULTS: Analysis of 10 aneurysms from 9 patients (6 ruptured, 3 unruptured) revealed an average aneurysm collagen age of <5 years, generally irrespective of patient age and aneurysm size or rupture status. Interestingly, F(14)C levels correlated with patient age as well as aneurysm size in ruptured aneurysm collagen samples. CONCLUSIONS: Our preliminary data suggest that collagen extracted from intracranial aneurysms generally has a high turnover, associated with aneurysm size and patient age. The correlation of patient age and aneurysm F(14)C levels could explain models of aneurysm development. Although preliminary, our findings may have implications for the biological and structural stability of ruptured and unruptured intracranial aneurysms.


Subject(s)
Aneurysm, Ruptured/diagnosis , Carbon/analysis , Collagen/chemistry , Intracranial Aneurysm/diagnosis , Radiometric Dating/methods , Age Factors , Aged , Aneurysm, Ruptured/metabolism , Carbon Radioisotopes , Collagen/metabolism , Feasibility Studies , Humans , Intracranial Aneurysm/metabolism , Mass Spectrometry , Middle Aged , Pilot Projects , Time Factors
17.
Arthritis Rheum ; 65(3): 743-52, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23233348

ABSTRACT

OBJECTIVE: Syndecan 4, a heparan sulfate proteoglycan, has been associated with osteoarthritis. The present study was undertaken to analyze the functional role of syndecan 4 in endochondral ossification of mouse embryos and in adult fracture repair, which, like osteoarthritis, involves an inflammatory component. METHODS: Sdc4 promoter activity was analyzed in Sdc4(-/-) lacZ-knockin mice, using ß-galactosidase staining. Endochondral ossification in embryos from embryonic day 16.5 was assessed by histologic and immunohistologic staining. Bone fracture repair was analyzed in femora of adult mice on days 7 and 14 postfracture. To evaluate Sdc2 and Sdc4 gene expression with and without tumor necrosis factor α (TNFα) and Wnt-3a stimulation, quantitative real-time polymerase chain reaction was performed. RESULTS: In Sdc4(-/-) lacZ-knockin animals, syndecan 4 promoter activity was detectable at all stages of chondrocyte differentiation, and Sdc4 deficiency inhibited chondrocyte proliferation. Aggrecan turnover in the uncalcified cartilage of the epiphysis was decreased transiently in vivo, but this did not lead to a growth phenotype at birth. In contrast, among adult mice, fracture healing was markedly delayed in Sdc4(-/-) animals and was accompanied by increased callus formation. Blocking of inflammation via anti-TNFα treatment during fracture healing reduced these changes in Sdc4(-/-) mice to levels observed in wild-type controls. We analyzed the differences between the mild embryonic and the severe adult phenotype, and found a compensatory up-regulation of syndecan 2 in the developing cartilage of Sdc4(-/-) mice that was absent in adult tissue. Stimulation of chondrocytes with Wnt-3a in vitro led to increased expression of syndecan 2, while stimulation with TNFα resulted in up-regulation of syndecan 4 but decreased expression of syndecan 2. TNFα stimulation reduced syndecan 2 expression and increased syndecan 4 expression even in the presence of Wnt-3a, suggesting that inflammation has a strong effect on the regulation of syndecan expression. CONCLUSION: Our results demonstrate that syndecan 4 is functionally involved in endochondral ossification and that its loss impairs fracture healing, due to inhibition of compensatory mechanisms under inflammatory conditions.


Subject(s)
Bone Development/physiology , Femoral Fractures/physiopathology , Fracture Healing/physiology , Syndecan-4/physiology , Animals , Cell Differentiation/physiology , Chondrocytes/cytology , Chondrocytes/physiology , Female , Femur/cytology , Femur/embryology , Femur/physiology , Growth Plate/cytology , Growth Plate/embryology , Growth Plate/physiology , Inflammation/physiopathology , Lac Operon/genetics , Male , Mice , Mice, Knockout , Osteogenesis/physiology , Pregnancy , Promoter Regions, Genetic/physiology , RNA, Messenger/metabolism , Syndecan-2/genetics , Syndecan-2/physiology , Syndecan-4/genetics , Tibia/cytology , Tibia/embryology , Tibia/physiology
18.
J Biol Chem ; 287(52): 43708-19, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23118222

ABSTRACT

Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins.


Subject(s)
Brain/metabolism , Extracellular Matrix/metabolism , Hedgehog Proteins/metabolism , Heparitin Sulfate/metabolism , Nerve Tissue Proteins/metabolism , Amino Acid Motifs , Animals , Binding Sites , Brain/cytology , Cell Line , Extracellular Matrix/genetics , Hedgehog Proteins/genetics , Heparitin Sulfate/genetics , Humans , Lipoylation/physiology , Mice , Nerve Tissue Proteins/genetics , Patched Receptors , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
19.
Dev Cell ; 20(6): 764-74, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21664575

ABSTRACT

All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides.


Subject(s)
Hedgehog Proteins/chemistry , Hedgehog Proteins/metabolism , Palmitates/pharmacology , Peptide Fragments/metabolism , Protein Processing, Post-Translational , Receptors, Cell Surface/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Cell Differentiation , Cells, Cultured , Chick Embryo , Chondrocytes/cytology , Chondrocytes/metabolism , Crystallography, X-Ray , Hedgehog Proteins/genetics , Humans , Mice , Models, Molecular , NIH 3T3 Cells , Patched Receptors , Patched-1 Receptor , Peptide Fragments/genetics , Protein Conformation , Receptors, Cell Surface/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
20.
J Biol Chem ; 286(26): 23608-19, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21572042

ABSTRACT

The fly morphogen Hedgehog (Hh) and its mammalian orthologs, Sonic, Indian, and Desert hedgehog, are secreted signaling molecules that mediate tissue patterning during embryogenesis and function in tissue homeostasis and regeneration in the adult. The function of all Hh family members is regulated at the levels of morphogen multimerization on the surface of producing cells, multimer release, multimer diffusion to target cells, and signal reception. These mechanisms are all known to depend on interactions of positively charged Hh amino acids (the Cardin-Weintraub (CW) motif) with negatively charged heparan sulfate (HS) glycosaminoglycan chains. However, a precise mechanistic understanding of these interactions is still lacking. In this work, we characterized ionic HS interactions of multimeric Sonic hedgehog (called ShhNp) as well as mutant forms lacking one or more CW residues. We found that deletion of all five CW residues as well as site-directed mutagenesis of CW residues Lys(33), Arg(35), and Lys(39) (mouse nomenclature) abolished HS binding. In contrast, CW residues Arg(34) and Lys(38) did not contribute to HS binding. Analysis and validation of Shh crystal lattice contacts provided an explanation for this finding. We demonstrate that CW residues Arg(34) and Lys(38) make contact with an acidic groove on the adjacent molecule in the multimer, suggesting a new function of these residues in ShhNp multimerization rather than HS binding. Therefore, the recombinant monomeric morphogen (called ShhN) differs in CW-dependent HS binding and biological activity from physiologically relevant ShhNp multimers, providing new explanations for functional differences observed between ShhN and ShhNp.


Subject(s)
Hedgehog Proteins/chemistry , Hedgehog Proteins/metabolism , Protein Multimerization/physiology , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Crystallography, X-Ray , Hedgehog Proteins/genetics , Humans , Mice , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL