Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Hear Res ; 431: 108740, 2023 04.
Article in English | MEDLINE | ID: mdl-36948126

ABSTRACT

To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.


Subject(s)
Lateral Line System , Mitochondria , Neurons , Lateral Line System/cytology , Lateral Line System/physiology , Animals , Zebrafish , Neurons/cytology , Vestibular System/cytology , Vestibular System/physiology , Biosensing Techniques
2.
STAR Protoc ; 3(4): 101766, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36240058

ABSTRACT

In this protocol, we describe steps that utilize the optical clarity of the zebrafish larvae and the stereotyped motor neuron axon structure in the trunk to measure spontaneous or evoked motor neuron axon activity. This activity is detected with transgenic fluorescent indicators introduced into the larvae by zygotic injection. Fluorescent indicator intensity changes in the small neuromuscular junctions are quantified to measure the presynaptic calcium activity and consequent synaptic vesicle release. For complete details on the use and execution of this protocol, please refer to Mandal et al. (2020).


Subject(s)
Motor Neurons , Zebrafish , Animals , Neuromuscular Junction/physiology , Axons/physiology , Synaptic Vesicles/physiology , Animals, Genetically Modified
3.
iScience ; 25(10): 105072, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36147950

ABSTRACT

In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal.

4.
J Neurosci ; 41(7): 1371-1392, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33376159

ABSTRACT

In neurons, mitochondria are transported by molecular motors throughout the cell to form and maintain functional neural connections. These organelles have many critical functions in neurons and are of high interest as their dysfunction is associated with disease. While the mechanics and impact of anterograde mitochondrial movement toward axon terminals are beginning to be understood, the frequency and function of retrograde (cell body directed) mitochondrial transport in neurons are still largely unexplored. While existing evidence indicates that some mitochondria are retrogradely transported for degradation in the cell body, the precise impact of disrupting retrograde transport on the organelles and the axon was unknown. Using long-term, in vivo imaging, we examined mitochondrial motility in zebrafish sensory and motor axons. We show that retrograde transport of mitochondria from axon terminals allows replacement of the axon terminal population within a day. By tracking these organelles, we show that not all mitochondria that leave the axon terminal are degraded; rather, they persist over several days. Disrupting retrograde mitochondrial flux in neurons leads to accumulation of aged organelles in axon terminals and loss of cell body mitochondria. Assays of neural circuit activity demonstrated that disrupting mitochondrial transport and function has no effect on sensory axon terminal activity but does negatively impact motor neuron axons. Taken together, our work supports a previously unappreciated role for retrograde mitochondrial transport in the maintenance of a homeostatic distribution of mitochondria in neurons and illustrates the downstream effects of disrupting this process on sensory and motor circuits.SIGNIFICANCE STATEMENT Disrupted mitochondrial transport has been linked to neurodegenerative disease. Retrograde transport of this organelle has been implicated in turnover of aged organelles through lysosomal degradation in the cell body. Consistent with this, we provide evidence that retrograde mitochondrial transport is important for removing aged organelles from axons; however, we show that these organelles are not solely degraded, rather they persist in neurons for days. Disrupting retrograde mitochondrial transport impacts the homeostatic distribution of mitochondria throughout the neuron and the function of motor, but not sensory, axon synapses. Together, our work shows the conserved reliance on retrograde mitochondrial transport for maintaining a healthy mitochondrial pool in neurons and illustrates the disparate effects of disrupting this process on sensory versus motor circuits.


Subject(s)
Axonal Transport/physiology , Axons/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Animals , Animals, Genetically Modified , Axons/pathology , Cells, Cultured , Mitochondria/genetics , Mitochondria/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/pathology , Organelles/genetics , Organelles/metabolism , Organelles/pathology , Rats , Zebrafish
5.
Genetics ; 216(2): 431-445, 2020 10.
Article in English | MEDLINE | ID: mdl-32788307

ABSTRACT

Active transport of organelles within axons is critical for neuronal health. Retrograde axonal transport, in particular, relays neurotrophic signals received by axon terminals to the nucleus and circulates new material among enpassant synapses. A single motor protein complex, cytoplasmic dynein, is responsible for nearly all retrograde transport within axons: its linkage to and transport of diverse cargos is achieved by cargo-specific regulators. Here, we identify Vezatin as a conserved regulator of retrograde axonal transport. Vertebrate Vezatin (Vezt) is required for the maturation and maintenance of cell-cell junctions and has not previously been implicated in axonal transport. However, a related fungal protein, VezA, has been shown to regulate retrograde transport of endosomes in hyphae. In a forward genetic screen, we identified a loss-of-function mutation in the Drosophila vezatin-like (vezl) gene. We here show that vezl loss prevents a subset of endosomes, including signaling endosomes containing activated BMP receptors, from initiating transport out of motor neuron terminal boutons. vezl loss also decreases the transport of endosomes and dense core vesicles, but not mitochondria, within axon shafts. We disrupted vezt in zebrafish and found that vezt loss specifically impairs the retrograde axonal transport of late endosomes, causing their accumulation in axon terminals. Our work establishes a conserved, cargo-specific role for Vezatin proteins in retrograde axonal transport.


Subject(s)
Axonal Transport , Drosophila Proteins/metabolism , Animals , Conserved Sequence , Drosophila Proteins/genetics , Drosophila melanogaster , Endosomes/metabolism , Neuromuscular Junction/metabolism , Protein Domains , Zebrafish
6.
Cell ; 179(1): 147-164.e20, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31539493

ABSTRACT

Long-distance RNA transport enables local protein synthesis at metabolically-active sites distant from the nucleus. This process ensures an appropriate spatial organization of proteins, vital to polarized cells such as neurons. Here, we present a mechanism for RNA transport in which RNA granules "hitchhike" on moving lysosomes. In vitro biophysical modeling, live-cell microscopy, and unbiased proximity labeling proteomics reveal that annexin A11 (ANXA11), an RNA granule-associated phosphoinositide-binding protein, acts as a molecular tether between RNA granules and lysosomes. ANXA11 possesses an N-terminal low complexity domain, facilitating its phase separation into membraneless RNA granules, and a C-terminal membrane binding domain, enabling interactions with lysosomes. RNA granule transport requires ANXA11, and amyotrophic lateral sclerosis (ALS)-associated mutations in ANXA11 impair RNA granule transport by disrupting their interactions with lysosomes. Thus, ANXA11 mediates neuronal RNA transport by tethering RNA granules to actively-transported lysosomes, performing a critical cellular function that is disrupted in ALS.


Subject(s)
Annexins/metabolism , Axonal Transport/physiology , Cytoplasmic Granules/metabolism , Lysosomes/metabolism , RNA/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Animals, Genetically Modified , Annexins/genetics , Axons/metabolism , Cell Line, Tumor , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mutation , Protein Binding , Rats/embryology , Rats, Sprague-Dawley , Transfection , Zebrafish
7.
Elife ; 82019 09 02.
Article in English | MEDLINE | ID: mdl-31476133

ABSTRACT

The trafficking mechanisms and transcriptional targets downstream of long-range neurotrophic factor ligand/receptor signaling that promote axon growth are incompletely understood. Zebrafish carrying a null mutation in a neurotrophic factor receptor, Ret, displayed defects in peripheral sensory axon growth cone morphology and dynamics. Ret receptor was highly enriched in sensory pioneer neurons and Ret51 isoform was required for pioneer axon outgrowth. Loss-of-function of a cargo adaptor, Jip3, partially phenocopied Ret axonal defects, led to accumulation of activated Ret in pioneer growth cones, and reduced retrograde Ret51 transport. Jip3 and Ret51 were also retrogradely co-transported, ultimately suggesting Jip3 is a retrograde adapter of active Ret51. Finally, loss of Ret reduced transcription and growth cone localization of Myosin-X, an initiator of filopodial formation. These results show a specific role for Ret51 in pioneer axon growth, and suggest a critical role for long-range retrograde Ret signaling in regulating growth cone dynamics through downstream transcriptional changes.


Subject(s)
Neuronal Outgrowth , Proto-Oncogene Proteins c-ret/metabolism , Signal Transduction , Animals , Gene Knockout Techniques , Proto-Oncogene Proteins c-ret/genetics , Zebrafish
8.
Front Cell Neurosci ; 13: 373, 2019.
Article in English | MEDLINE | ID: mdl-31447650

ABSTRACT

The complex and elaborate architecture of a neuron poses a great challenge to the cellular machinery which localizes proteins and organelles, such as mitochondria, to necessary locations. Proper mitochondrial localization in neurons is particularly important as this organelle provides energy and metabolites essential to form and maintain functional neural connections. Consequently, maintenance of a healthy pool of mitochondria and removal of damaged organelles are essential for neuronal homeostasis. Long distance transport of the organelle itself as well as components necessary for maintaining mitochondria in distal compartments are important for a constant supply of healthy mitochondria at the right time and place. Accordingly, many neurodegenerative diseases have been associated with mitochondrial abnormalities. Here, we review our current understanding on transport-dependent mechanisms that regulate mitochondrial replenishment. We focus on axonal transport and import of mRNAs and proteins destined for mitochondria as well as mitochondrial fusion and fission to maintain mitochondrial homeostasis in distal compartments of the neuron.

9.
Front Cell Dev Biol ; 6: 144, 2018.
Article in English | MEDLINE | ID: mdl-30410881

ABSTRACT

Despite their importance for cellular viability, the actual life history and properties of mitochondria in neurons are still unclear. These organelles are distributed throughout the entirety of the neuron and serve many functions, including: energy production (ATP), iron homeostasis and processing, calcium buffering, and metabolite production, as well as many other lesser known activities. Given their importance, understanding how these organelles are positioned and how their health and function is maintained is critical for many aspects of cell biology. This is best illustrated by the diverse disease literature which demonstrates that abnormal mitochondrial movement, localization, size, or function often correlates with neural pathology. In the following methods article, we will describe the techniques and tools we have optimized to directly visualize mitochondria and analyze mitochondrial lifetime, health, and function in neurons in vivo using fluorescent reporters in the zebrafish. The zebrafish system is ideal for in vivo studies of mitochondrial biology as: (1) neuronal circuits develop rapidly, within days; (2) it is genetically accessible; and (3) embryos and larvae are translucent allowing imaging in a completely intact vertebrate nervous system. Using these tools and techniques, the field is poised to answer questions of mitochondrial biology in the context of neuronal health and function in normal and disease states.

10.
Proc Natl Acad Sci U S A ; 114(43): E9153-E9162, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29073112

ABSTRACT

Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.


Subject(s)
Dynactin Complex/metabolism , Dyneins/metabolism , Myelin Basic Protein/genetics , Oligodendroglia/metabolism , RNA, Messenger/metabolism , Animals , Animals, Genetically Modified , Axons/pathology , Biological Transport , Cell Proliferation/genetics , Cells, Cultured , Dynactin Complex/genetics , Dyneins/genetics , Larva , Microfilament Proteins/genetics , Oligodendroglia/pathology , Rats, Sprague-Dawley , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
Elife ; 62017 04 17.
Article in English | MEDLINE | ID: mdl-28414272

ABSTRACT

Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10, a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.


Subject(s)
Axons/metabolism , Dynactin Complex/metabolism , Mitochondria/metabolism , Zebrafish Proteins/metabolism , Animals , Biological Transport , Dynactin Complex/genetics , Genetic Testing , Mutation , Protein Binding , Zebrafish , Zebrafish Proteins/genetics
12.
J Neurosci ; 36(26): 7014-26, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27358458

ABSTRACT

UNLABELLED: Delivery of proteins and organelles to the growth cone during axon extension relies on anterograde transport by kinesin motors. Though critical for neural circuit development, the mechanisms of cargo-specific anterograde transport during axon extension are only starting to be explored. Cargos of particular importance for axon outgrowth are microtubule modifiers, such as SCG10 (Stathmin-2). SCG10 is expressed solely during axon extension, localized to growth cones, and essential for axon outgrowth; however, the mechanisms of SCG10 transport and activity were still debated. Using zebrafish mutants and in vivo imaging, we identified the Kif1B motor and its interactor Kif1 binding protein (KBP) as critical for SCG10 transport to axon growth cones and complete axon extension. Axon truncation in kbp(st23) mutants can be suppressed by SCG10 overexpression, confirming the direct relationship between decreased SCG10 levels and failed axon outgrowth. Live imaging revealed that the reduced levels of SCG10 in kbp(st23) mutant growth cones led to altered microtubule stability, defining the mechanistic basis of axon truncation. Thus, our data reveal a novel role for the Kif1B-KBP complex in the anterograde transport of SCG10, which is necessary for proper microtubule dynamics and subsequent axon extension. SIGNIFICANCE STATEMENT: Together, our data define the mechanistic underpinnings of failed axon outgrowth with loss of KBP or its associated motor, Kif1B. In addition, we provide conclusive evidence that this defect results from disruption of anterograde transport of SCG10. This is one of the first examples of a motor to be implicated in the essential transport of a discreet cargo necessary for axon extension. In addition, counter to previous in vitro and cell culture results, neither loss of the Kif1B motor nor KBP resulted in inhibition of mitochondrial transport. Altogether, our work links transport of SCG10 to the regulation of microtubule dynamics in the axon growth cone and enhances our understanding of this process during axon outgrowth.


Subject(s)
Axons/physiology , Growth Cones/metabolism , Kinesins/metabolism , Microtubules/metabolism , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Carrier Proteins/genetics , Carrier Proteins/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental/genetics , Kinesins/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Transport/genetics , RNA, Messenger/metabolism , Stathmin/genetics , Stathmin/metabolism , Zebrafish , Zebrafish Proteins/genetics
13.
Methods Cell Biol ; 131: 311-29, 2016.
Article in English | MEDLINE | ID: mdl-26794521

ABSTRACT

Intracellular transport of proteins and organelles in neurons plays an essential role in nervous system development and maintenance. Axon outgrowth, synapse formation, and synapse function, among other physiological processes, require active transport of these cargos between the neuronal soma and axon terminals. Abnormalities in this axonal transport are associated with a number of neurodevelopmental and neurodegenerative disorders, such as Charcot-Marie-Tooth disease, Alzheimer disease, and amyotrophic lateral sclerosis. Despite its importance for nervous system development and health, methods for visualizing axonal transport in an intact vertebrate have been lacking. Using the advantages of the zebrafish system, we have developed a straightforward approach to visualize axonal transport of various cargos and motor proteins in intact zebrafish embryos and larvae. Here, we describe this approach in detail and discuss how it can be applied to address questions related to cargo-specific transport regulation and its effects on axon morphology and function in the developing and mature nervous system.


Subject(s)
Axonal Transport/physiology , Axons/metabolism , Cytoplasmic Dyneins/metabolism , Lateral Line System/innervation , Zebrafish/metabolism , Animals , Cytoplasmic Dyneins/genetics , Dynactin Complex , Embryo, Nonmammalian/metabolism , Green Fluorescent Proteins/genetics , Kinesins/metabolism , Kymography/methods , Larva/metabolism , Luminescent Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Red Fluorescent Protein
14.
PLoS Genet ; 9(2): e1003303, 2013.
Article in English | MEDLINE | ID: mdl-23468645

ABSTRACT

Retrograde axonal transport requires an intricate interaction between the dynein motor and its cargo. What mediates this interaction is largely unknown. Using forward genetics and a novel in vivo imaging approach, we identified JNK-interacting protein 3 (Jip3) as a direct mediator of dynein-based retrograde transport of activated (phosphorylated) c-Jun N-terminal Kinase (JNK) and lysosomes. Zebrafish jip3 mutants (jip3(nl7) ) displayed large axon terminal swellings that contained high levels of activated JNK and lysosomes, but not other retrograde cargos such as late endosomes and autophagosomes. Using in vivo analysis of axonal transport, we demonstrated that the terminal accumulations of activated JNK and lysosomes were due to a decreased frequency of retrograde movement of these cargos in jip3(nl7) , whereas anterograde transport was largely unaffected. Through rescue experiments with Jip3 engineered to lack the JNK binding domain and exogenous expression of constitutively active JNK, we further showed that loss of Jip3-JNK interaction underlies deficits in pJNK retrograde transport, which subsequently caused axon terminal swellings but not lysosome accumulation. Lysosome accumulation, rather, resulted from loss of lysosome association with dynein light intermediate chain (dynein accessory protein) in jip3(nl7) , as demonstrated by our co-transport analyses. Thus, our results demonstrate that Jip3 is necessary for the retrograde transport of two distinct cargos, active JNK and lysosomes. Furthermore, our data provide strong evidence that Jip3 in fact serves as an adapter protein linking these cargos to dynein.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Axonal Transport/genetics , Dyneins/metabolism , JNK Mitogen-Activated Protein Kinases , Zebrafish Proteins/metabolism , Zebrafish , Adaptor Proteins, Signal Transducing/genetics , Animals , Dyneins/genetics , Endosomes/genetics , Endosomes/metabolism , Gene Expression Regulation , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Lysosomes/genetics , Lysosomes/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phosphorylation , Zebrafish/genetics , Zebrafish/metabolism
15.
Development ; 138(18): 3921-30, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21862556

ABSTRACT

The zebrafish posterior lateral line (pLL) is a sensory system that comprises clusters of mechanosensory organs called neuromasts (NMs) that are stereotypically positioned along the surface of the trunk. The NMs are deposited by a migrating pLL primordium, which is organized into polarized rosettes (proto-NMs). During migration, mature proto-NMs are deposited from the trailing part of the primordium, while progenitor cells in the leading part give rise to new proto-NMs. Wnt signaling is active in the leading zone of the primordium and global Wnt inactivation leads to dramatic disorganization of the primordium and a loss of proto-NM formation. However, the exact cellular events that are regulated by the Wnt pathway are not known. We identified a mutant strain, lef1(nl2), that contains a lesion in the Wnt effector gene lef1. lef1(nl2) mutants lack posterior NMs and live imaging reveals that rosette renewal fails during later stages of migration. Surprisingly, the overall primordium patterning, as assayed by the expression of various markers, appears unaltered in lef1(nl2) mutants. Lineage tracing and mosaic analyses revealed that the leading cells (presumptive progenitors) move out of the primordium and are incorporated into NMs; this results in a decrease in the number of proliferating progenitor cells and eventual primordium disorganization. We concluded that Lef1 function is not required for initial primordium organization or migration, but is necessary for proto-NM renewal during later stages of pLL formation. These findings revealed a novel role for the Wnt signaling pathway during mechanosensory organ formation in zebrafish.


Subject(s)
Lateral Line System/cytology , Lateral Line System/embryology , Stem Cells/physiology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Body Patterning/genetics , Body Patterning/physiology , Bone Development/genetics , Cell Movement/genetics , Cell Movement/physiology , Cell Proliferation , Embryo, Nonmammalian , Lateral Line System/metabolism , Mutation/physiology , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Stem Cells/cytology , Trans-Activators/genetics , Trans-Activators/metabolism , Trans-Activators/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Proteins/physiology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
16.
Gene Expr Patterns ; 10(1): 75-85, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19822223

ABSTRACT

Mutations in the LIS1 (Lissencephaly-1) gene underlie classical lissencephaly. This neurodevelopmental disorder is characterized by a loss of cortical gyri and improper laminar formation of the brain due to impaired neuronal migration. Patients with type 1 lissecephaly present with mental retardation and an increased risk of developing other disorders resulting from abnormal neurodevelopment, such as epilepsy. LIS1 is a dynamic protein implicated in numerous cellular mechanisms important for brain development. We have cloned and characterized the orthologs of LIS1 in the zebrafish. The zebrafish is a well-documented model organism for studies of brain development and offers many advantages including embryonic transparency, the ability to easily manipulate gene expression and also generate transgenic animals which can be used to track single, migrating neurons. In the zebrafish nervous system, the LIS1 orthologs are expressed in overlapping temporal and partially overlapping spatial patterns. While lis1a is primarily expressed in the developing central nervous system and the eye, lis1b is highly expressed in the peripheral nervous system as well as the Rohon-beard neurons. Rohon-beard neurons are the early sensory system of the embryo. We postulate that understanding the functions of Lis1 in the whole embryo will provide better insight into the genetic and neurodevelopmental basis of lissencephaly. This will not only aid in the development of therapeutic interventions for diseases such as lissencephaly but will also contribute to the general understanding of brain development.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Gene Expression Regulation, Developmental/physiology , Lissencephaly/genetics , Microtubule-Associated Proteins/metabolism , Nervous System/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cloning, Molecular , Computational Biology , Gene Expression Regulation, Developmental/genetics , Immunohistochemistry , In Situ Hybridization , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish/genetics
17.
Development ; 136(15): 2623-32, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19570850

ABSTRACT

This work reports the characterization and functional analysis of disrupted in schizophrenia 1 (disc1), a well-documented schizophrenia-susceptibility gene, in zebrafish cranial neural crest (CNC). Our data demonstrated that disc1 was expressed in zebrafish CNC cells. Loss of Disc1 resulted in persistent CNC cell medial migration, dorsal to the developing neural epithelium, and hindered migration away from the region dorsal to the neural rod. General CNC cell motility was not affected by Disc1 knockdown, however, as the speed of CNC cells was indistinguishable from that of wild-type counterparts. We determined that the failure of CNC cells to migrate away from the neural rod correlated with the enhanced expression of two transcription factors, foxd3 and sox10. These transcription factors have many functions in CNC cells, including the maintenance of precursor pools, timing of migration onset, and the induction of cell differentiation. Our work, in conjunction with previous studies, suggests that the perpetuation of expression of these factors affects several aspects of CNC cell development, leading to a loss of craniofacial cartilage and an expansion of peripheral cranial glia. Based on our data, we propose a model in which Disc1 functions in the transcriptional repression of foxd3 and sox10, thus mediating CNC cell migration and differentiation.


Subject(s)
Cell Differentiation , Cell Movement , Forkhead Transcription Factors/genetics , Nerve Tissue Proteins/metabolism , Neural Crest/cytology , SOXE Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Knockdown Techniques , Nerve Tissue Proteins/genetics , Neural Crest/drug effects , Neuroglia/cytology , Neuroglia/metabolism , Oligonucleotides, Antisense/pharmacology , RNA Splice Sites , SOXE Transcription Factors/metabolism , Sequence Homology, Amino Acid , Skull/cytology , Skull/metabolism , Time Factors , Zebrafish/genetics
18.
Gene Expr Patterns ; 7(6): 672-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17482883

ABSTRACT

NudE-Like (NDEL1/NUDEL), through its interaction with LIS1 and DISC1, has been implicated in the etiology of neurological disorders such as lissencephaly and schizophrenia, respectively. Subsequently, a large portion of the research done on the function of NDEL1 has been specifically targeted to its role in brain development while ignoring its function in other developing and adult tissues. To begin a more global exploration of NDEL1's function, this study characterizes the developmental expression pattern of the NDEL1 orthologs in the zebrafish embryo. Our bioinformatic analyses identified two NDEL1 orthologs in the zebrafish, ndel1a and ndel1b. ndel1a is expressed predominantly in the anterior central nervous system (CNS), trigeminal ganglia, and eyes while ndel1b is expressed in the developing somites and, later, in the CNS. In addition to the spatial differences in their expression patterns, these genes are also individually regulated in their temporal expression. Both are expressed maternally but at later time-points there are subtle differences. ndel1a expression is lost between 6 and 12 hpf but then increases to a higher, near steady state, level from 72 to 120 hpf. ndel1b expression decreases from 3 to 36 hpf and subsequently increases from 36 to 120 hpf. The non-overlapping expression patterns of these two orthologs may indicate that they have split the functional role of the one NDEL1 gene present in mammalian species. The temporal and spatial regulation of these two orthologs will aid in the characterization of the multiple functions of this gene in both the developing and mature organism.


Subject(s)
Gene Expression Regulation, Developmental , Zebrafish Proteins/genetics , Zebrafish/genetics , Amino Acid Sequence , Animals , Brain/growth & development , Brain/physiology , Carrier Proteins/genetics , Central Nervous System/embryology , Central Nervous System/physiology , Cerebellum/physiology , Cloning, Molecular , Embryo, Nonmammalian , Female , Gene Expression Profiling , Humans , Lissencephaly/genetics , Mice , Molecular Sequence Data , Purkinje Cells/physiology , Species Specificity , Trigeminal Ganglion/embryology , Trigeminal Ganglion/growth & development , Zebrafish/embryology , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...