Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Chemosphere ; 351: 141162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218235

ABSTRACT

The early detection of upcoming disease outbreaks is essential to avoid both health and economic damage. The last four years of COVID-19 pandemic have proven wastewater-based epidemiology is a reliable system for monitoring the spread of SARS-CoV-2, a causative agent of COVID-19, in an urban population. As this monitoring enables the identification of the prevalence of spreading variants of SARS-CoV-2, it could provide a critical tool in the fight against this viral disease. In this study, we evaluated the presence of variants and subvariants of SARS-CoV-2 in Prague wastewater using nanopore-based sequencing. During August 2021, the data clearly showed that the number of identified SARS-CoV-2 RNA copies increased in the wastewater earlier than in clinical samples indicating the upcoming wave of the Delta variant. New SARS-CoV-2 variants consistently prevailed in wastewater samples around a month after they already prevailed in clinical samples. We also analyzed wastewater samples from smaller sub-sewersheds of Prague and detected significant differences in SARS-CoV-2 lineage progression dynamics among individual localities studied, e.g., suggesting faster prevalence of new variants among the sites with highest population density and mobility.


Subject(s)
COVID-19 , Nanopores , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater , Pandemics , Prevalence , RNA, Viral
2.
Front Microbiol ; 14: 1289671, 2023.
Article in English | MEDLINE | ID: mdl-38033559

ABSTRACT

Bartonelloses are neglected emerging infectious diseases caused by facultatively intracellular bacteria transmitted between vertebrate hosts by various arthropod vectors. The highest diversity of Bartonella species has been identified in rodents. Within this study we focused on the edible dormouse (Glis glis), a rodent with unique life-history traits that often enters households and whose possible role in the epidemiology of Bartonella infections had been previously unknown. We identified and cultivated two distinct Bartonella sub(species) significantly diverging from previously described species, which were characterized using growth characteristics, biochemical tests, and various molecular techniques including also proteomics. Two novel (sub)species were described: Bartonella grahamii subsp. shimonis subsp. nov. and Bartonella gliris sp. nov. We sequenced two individual strains per each described (sub)species. During exploratory genomic analyses comparing two genotypes ultimately belonging to the same species, both factually and most importantly even spatiotemporally, we noticed unexpectedly significant structural variation between them. We found that most of the detected structural variants could be explained either by prophage excision or integration. Based on a detailed study of one such event, we argue that prophage deletion represents the most probable explanation of the observed phenomena. Moreover, in one strain of Bartonella grahamii subsp. shimonis subsp. nov. we identified a deletion related to Bartonella Adhesin A, a major pathogenicity factor that modulates bacteria-host interactions. Altogether, our results suggest that even a limited number of passages induced sufficient selective pressure to promote significant changes at the level of the genome.

3.
Article in English | MEDLINE | ID: mdl-37768182

ABSTRACT

A novel bacterial species is described that was isolated from the soil of Norrbyskär island (Sweden). This Gram-negative, facultatively anaerobic and motile rod, designated 17-6T, was classified in the family Chromobacteriaceae, class Betaproteobacteria, and further characterized by a polyphasic approach. Comparative 16S rRNA gene analysis revealed the potential species novelty of the strain, with Silvimonas terrae (98.20 % similarity) and Silvimonas amylolytica (98.13 %) being its closest type strains. The phylogenetic novelty of the isolate at the level of species was confirmed using phylogenetic analyses based on the whole genome: average nucleotide identity values ranged from 79 to 81 %, average amino acid identity values from 75 to 81 % and percentage of conserved proteins values from 69-81 % with the members of genera Silvimonas and Amantichitinum. On the basis of phenotypic, phylogenetic, functional and genotypic analyses, we propose the isolate as the type strain of a novel species within the genus Silvimonas with the designation Silvimonas soli 17-6T (=DSM 115342T=CCM 9308T).


Subject(s)
Betaproteobacteria , Fatty Acids , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil , Sweden , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Soil Microbiology
4.
Klin Mikrobiol Infekc Lek ; 29(1): 26-28, 2023 Mar.
Article in Czech | MEDLINE | ID: mdl-37586089

ABSTRACT

In the Czech Republic, botulism is a rare life-threatening disease. A total of 155 cases have been reported since 1960; according to the ISIN (formerly EPIDAT) database, there have been only three isolated cases since 2013, with the exception of a single occurrence of familial botulism in 2013. In our work, we present the occurrence of botulism after ingestion of pâté of untraceable origin by a couple who were hospitalized for botulotoxin food poisoning in July 2022. Their neurological symptoms were dominated by dysarthria. After administration of antibotulinum serum, their condition improved significantly. Patient samples were analyzed using affinity carriers and MALDI mass spectrometry, a modern highly sensitive technique for detecting the presence of botulinum neurotoxins. Unlike traditional detection by a difficult and costly biological experiment on mice, the above analysis does not require the killing of laboratory animals.


Subject(s)
Botulinum Toxins , Botulism , Clostridium botulinum , Mice , Animals , Botulism/diagnosis , Botulism/epidemiology , Neurotoxins , Czech Republic/epidemiology , Botulinum Toxins/analysis
5.
Viruses ; 14(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36016395

ABSTRACT

Herein, we present our findings of an early appearance of the Monkeypox virus in Prague, Czech Republic. A retrospective analysis of biological samples, carried out on the 28th of April, revealed a previously unrecognized case of Monkeypox virus (MPxV) infection. Subsequent data analysis confirmed that the virus strain belongs to the ongoing outbreak. Combined with clinical and epidemiological investigations, we extended the roots of the current outbreak at least back to 16th of April, 2022.


Subject(s)
Mpox (monkeypox) , Czech Republic/epidemiology , Disease Outbreaks , Humans , Mpox (monkeypox)/epidemiology , Monkeypox virus , Retrospective Studies
6.
Front Microbiol ; 13: 828531, 2022.
Article in English | MEDLINE | ID: mdl-35265061

ABSTRACT

Intrapopulation genetic variability in prokaryotes is receiving increasing attention thanks to improving sequencing methods; however, the ability to distinguish intrapopulation variability from species clusters or initial stages of gene flow barrier development remains insufficient. To overcome this limitation, we took advantage of the lifestyle of Ferrovum myxofaciens, a species that may represent 99% of prokaryotic microbiome of biostalactites growing at acid mine drainage springs. We gained four complete and one draft metagenome-assembled F. myxofaciens genomes using Oxford Nanopore and Illumina sequencing and mapped the reads from each sample on the reference genomes to assess the intrapopulation variability. We observed two phenomena associated with intrapopulation variability: hypervariable regions affected by mobilome expansion called "scrapyards," and variability in gene disruptions caused by transposons within each population. Both phenomena were previously described in prokaryotes. However, we present here for the first time scrapyard regression and the development of a new one. Nearly complete loss of intrapopulation short sequence variability in the old scrapyard and high variability in the new one suggest that localized gene flow suppression is necessary for scrapyard formation. Concerning the variable gene disruptions, up to 9 out of 41 occurrences per sample were located in highly conserved diguanylate cyclases/phosphodiesterases. We propose that microdiversification of life strategies may be an adaptive outcome of random diguanylate cyclase elimination. The mine biostalactites thus proved as a unique model system for describing genomic intrapopulation processes, as they offer easily sampleable units enriched in a single microbial species.

7.
Prague Med Rep ; 122(2): 96-105, 2021.
Article in English | MEDLINE | ID: mdl-34137685

ABSTRACT

In our study we present an overview of the use of Oxford Nanopore Technologies (ONT) sequencing technology on the background of Enteric fever. Unlike traditional methods (e.g., qPCR, serological tests), the nanopore sequencing technology enables virtually real-time data generation and highly accurate pathogen identification and characterization. Blood cultures were obtained from a 48-year-old female patient suffering from a high fever, headache and diarrhea. Nevertheless, both the initial serological tests and stool culture appeared to be negative. Therefore, the bacterial isolate from blood culture was used for nanopore sequencing (ONT). This technique in combination with subsequent bioinformatic analyses allowed for prompt identification of the disease-causative agent as Salmonella enterica subsp. enterica serovar Paratyphi A. The National Reference Laboratory for Salmonella (NIPH) independently reported this isolate also as serovar Paratyphi A on the basis of results of biochemical and agglutination tests. Therefore, our results are in concordance with certified standards. Furthermore, the data enabled us to assess some basic questions concerning the comparative genomics, i.e., to describe whether the isolated strain differs from the formerly published ones or not. Quite surprisingly, these results indicate that we have detected a novel and so far, unknown variety of this bacteria.


Subject(s)
Nanopore Sequencing , Typhoid Fever , Female , Humans , Middle Aged , Salmonella , Salmonella paratyphi A/genetics
8.
Int J Oncol ; 58(2): 238-250, 2021 02.
Article in English | MEDLINE | ID: mdl-33491750

ABSTRACT

Chronic myeloid leukemia (CML) is a malignant hematopoietic disorder distinguished by the presence of a BCR­ABL1 fused oncogene with constitutive kinase activity. Targeted CML therapy by specific tyrosine kinase inhibitors (TKIs) leads to a marked improvement in the survival of the patients and their quality of life. However, the development of resistance to TKIs remains a critical issue for a subset of patients. The most common cause of resistance are numerous point mutations in the BCR­ABL1 gene, followed by less common mutations and multiple mutation-independent mechanisms. Recently, exosomes, which are extracellular vesicles excreted from normal and tumor cells, have been associated with drug resistance and cancer progression. The aim of the present study was to characterize the exosomes released by imatinib­resistant K562 (K562IR) cells. The K562IR­derived exosomes were internalized by imatinib­sensitive K562 cells, which thereby increased their survival in the presence of 2 µM imatinib. The exosomal cargo was subsequently analyzed to identify resistance­associated markers using a deep label­free quantification proteomic analysis. There were >3,000 exosomal proteins identified of which, 35 were found to be differentially expressed. From this, a total of 3, namely the membrane proteins, interferon­induced transmembrane protein 3, CD146 and CD36, were markedly upregulated in the exosomes derived from the K562IR cells, and exhibited surface localization. The upregulation of these proteins was verified in the K562IR exosomes, and also in the K562IR cells. Using flow cytometric analysis, it was possible to further demonstrate the potential of CD146 as a cell surface marker associated with imatinib resistance in K562 cells. Taken together, these results suggested that exosomes and their respective candidate surface proteins could be potential diagnostic markers of TKI drug resistance in CML therapy.


Subject(s)
Exosomes/metabolism , Fusion Proteins, bcr-abl/antagonists & inhibitors , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , CD146 Antigen/metabolism , CD36 Antigens/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Exosomes/drug effects , Fusion Proteins, bcr-abl/genetics , Humans , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Membrane Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , RNA-Binding Proteins/metabolism
9.
Microorganisms ; 9(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374468

ABSTRACT

Early detection of biohazardous bacteria that can be misused as biological weapons is one of the most important measures to prevent the spread and outbreak of biological warfare. For this reason, many instrument platforms need to be introduced into operation in the field of biological warfare detection. Therefore the purpose of this study is to establish a new detection panel for biothreat bacteria (Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Brucella spp.) and confirm it by collaborative validation by using a multiplex oligonucleotide ligation followed by polymerase chain reaction and hybridization to microspheres by MagPix detection platform (MOL-PCR). Appropriate specific sequences in bacterial DNA were selected and tested to assemble the detection panel, and MOLigo probes (short specific oligonucleotides) were designed to show no cross-reactivity when tested between bacteria and to decrease the background signal measurement on the MagPix platform. During testing, sensitivity was assessed for all target bacteria using serially diluted DNA and was determined to be at least 0.5 ng/µL. For use as a diagnostic kit and easier handling, the storage stability of ligation premixes (MOLigo probe mixes) was tested. This highly multiplex method can be used for rapid screening to prevent outbreaks arising from the use of bacterial strains for bioterrorism, because time of analysis take under 4 h.

10.
BMC Microbiol ; 20(1): 200, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32640994

ABSTRACT

BACKGROUND: Rickettsialpox is a febrile illness caused by the mite-borne pathogen Rickettsia akari. Several cases of this disease are reported worldwide annually. Nevertheless, the relationship between the immunogenicity of R. akari and disease development is still poorly understood. Thus, misdiagnosis is frequent. Our study is aiming to identify immunogenic proteins that may improve disease recognition and enhance subsequent treatment. To achieve this goal, two proteomics methodologies were applied, followed by immunoblot confirmation. RESULTS: Three hundred and sixteen unique proteins were identified in the whole-cell extract of R. akari. The most represented protein groups were found to be those involved in translation, post-translational modifications, energy production, and cell wall development. A significant number of proteins belonged to amino acid transport and intracellular trafficking. Also, some proteins affecting the virulence were detected. In silico analysis of membrane enriched proteins revealed 25 putative outer membrane proteins containing beta-barrel structure and 11 proteins having a secretion signal peptide sequence. Using rabbit and human sera, various immunoreactive proteins were identified from which the 44 kDa uncharacterized protein (A8GP63) has demonstrated a unique detection capability. It positively distinguished the sera of patients with Rickettsialpox from other rickettsiae positive human sera. CONCLUSION: Our proteomic analysis certainly contributed to the lack of knowledge of R. akari pathogenesis. The result obtained may also serve as a guideline for a more accurate diagnosis of rickettsial diseases. The identified 44 kDa uncharacterized protein can be certainly used as a unique marker of rickettsialpox or as a target molecule for the development of more effective treatment.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Proteomics/methods , Rickettsia akari/isolation & purification , Spotted Fever Group Rickettsiosis/diagnosis , Animals , Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Chromatography, Liquid , Humans , Models, Molecular , Molecular Weight , Protein Structure, Secondary , Rabbits , Rickettsia akari/immunology , Rickettsia akari/metabolism , Spotted Fever Group Rickettsiosis/immunology , Tandem Mass Spectrometry
11.
Front Microbiol ; 10: 2022, 2019.
Article in English | MEDLINE | ID: mdl-31620097

ABSTRACT

Coxiella burnetii is the causative agent of the zoonotic disease Q fever. To date, the lipopolysaccharide (LPS) is the only defined and characterized virulence determinant of C. burnetii. In this study, proteome profiles of C. burnetii Nine Mile phase I (RSA 493, NMI) and its isogenic Nine Mile phase II (RSA 439 NMII) isolate with a deep rough LPS were compared on L-929 mouse fibroblasts and in complex (ACCM-2), and defined (ACCM-D) media. Whole proteome extracts were analyzed using a label-free quantification approach. Between 659 and 1,046 C. burnetii proteins of the 2,132 annotated coding sequences (CDS) were identified in any particular experiment. Proteome profiles clustered according to the cultivation conditions used, indicating different regulation patterns. NMI proteome profiles compared to NMII in ACCM-D indicate transition from an exponential to a stationary phase. The levels of regulatory proteins such as RpoS, CsrA2, UspA1, and UspA2 were increased. Comparison of the oxidative stress response of NMI and NMII indicated that ACCM-2 represents a high oxidative stress environment. Expression of peroxidases, superoxide dismutases, as well as thioredoxins was increased for NMI. In contrast, in ACCM-D, only osmoregulation seems to be necessary. Proteome profiles of NMII do not differ and indicate that both axenic media represent similar oxidative stress environments. Deep rough LPS causes changes of the outer membrane stability and fluidity. This might be one reason for the observed differences. Proteins associated with the T4SS and Sec translocon as well as several effector proteins were detectable under all three conditions. Interestingly, none of these putatively secreted proteins are upregulated in ACCM-2 compared to ACCM-D, and L-929 mouse fibroblasts. Curiously, a higher similarity of proteomic patterns (overlapping up- and downregulated proteins) of ACCM-D and bacteria grown in cell culture was observed. Particularly, the proteins involved in a better adaptation or homeostasis in response to the harsh environment of the parasitophorous vacuole were demonstrated for NMI. This semi-quantitative proteomic analysis of C. burnetii compared axenically grown bacteria to those propagated in cell culture.

12.
Toxins (Basel) ; 11(3)2019 03 23.
Article in English | MEDLINE | ID: mdl-30909561

ABSTRACT

Targeted proteomics recently proved to be a technique for the detection and absolute quantification of proteins not easily accessible to classical bottom-up approaches. Due to this, it has been considered as a high fidelity tool to detect potential warfare agents in wide spread kinds of biological and environmental matrices. Clostridium perfringens toxins are considered to be potential biological weapons, especially the epsilon toxin which belongs to a group of the most powerful bacterial toxins. Here, the development of a target mass spectrometry method for the detection of C. perfringens protein toxins (alpha, beta, beta2, epsilon, iota) is described. A high-resolution mass spectrometer with a quadrupole-Orbitrap system operating in target acquisition mode (parallel reaction monitoring) was utilized. Because of the lack of commercial protein toxin standards recombinant toxins were prepared within Escherichia coli. The analysis was performed using proteotypic peptides as the target compounds together with their isotopically labeled synthetic analogues as internal standards. Calibration curves were calculated for each peptide in concentrations ranging from 0.635 to 1101 fmol/µL. Limits of detection and quantification were determined for each peptide in blank matrices.


Subject(s)
Bacterial Proteins/analysis , Bacterial Toxins/analysis , Clostridium perfringens , Peptides/analysis , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Chromatography, Liquid , Clostridium perfringens/genetics , Clostridium perfringens/growth & development , Clostridium perfringens/metabolism , Escherichia coli/genetics , Peptides/genetics , Proteomics , Recombinant Proteins/analysis , Tandem Mass Spectrometry
13.
Toxins (Basel) ; 10(3)2018 02 28.
Article in English | MEDLINE | ID: mdl-29495560

ABSTRACT

Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.


Subject(s)
Bacterial Proteins/analysis , Plant Proteins/analysis , Proteomics/methods , Toxins, Biological/analysis , Animals , Bacterial Proteins/toxicity , Humans , Plant Proteins/toxicity , Toxins, Biological/toxicity
14.
Gut Pathog ; 9: 45, 2017.
Article in English | MEDLINE | ID: mdl-28814976

ABSTRACT

BACKGROUND: Clostridium difficile is the causative agent of C. difficile infection (CDI) that could be manifested by diarrhea, pseudomembranous colitis or life-threatening toxic megacolon. The spread of certain strains represents a significant economic burden for health-care. The epidemic successful strains are also associated with severe clinical features of CDI. Therefore, a proteomic study has been conducted that comprises proteomes released from in vitro cultured panel of eight different PCR ribotypes (RTs) and employs the combination of shotgun proteomics and label-free quantification (LFQ) approach. RESULTS: The comparative semi-quantitative analyses enabled investigation of a total of 662 proteins. Both hierarchical clustering and principal component analysis (PCA) created eight distinctive groups. From these quantifiable proteins, 27 were significantly increased in functional annotations. Among them, several known factors connected with virulence were identified, such as toxin A, B, binary toxin, flagellar proteins, and proteins associated with Pro-Pro endopeptidase (PPEP-1) functional complex. Comparative analysis of protein expression showed a higher expression or unique expression of proteins linked to pathogenicity or iron metabolism in RTs 027 and 176 supporting their genetic relatedness and clinical importance at the proteomic level. Moreover, the absence of putative nitroreductase and the abundance of the Abc-type fe3+ transport system protein were observed as biomarkers for the RTs possessing binary toxin genes (027, 176 and 078). Higher expression of selected flagellar proteins clearly distinguished RTs 027, 176, 005 and 012, confirming the pathogenic role of the assembly in CDI. Finally, the histidine synthesis pathway regulating protein complex HisG/HisZ was observed only in isolates possessing the genes for toxin A and B. CONCLUSIONS: This study showed the applicability of the LFQ approach and provided the first semi-quantitative insight into the proteomes released from in vitro cultured panel of eight RTs. The observed differences pointed to a new direction for studies focused on the elucidation of the mechanisms underlining the CDI nature.

15.
Viruses ; 9(8)2017 07 27.
Article in English | MEDLINE | ID: mdl-28749451

ABSTRACT

Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.


Subject(s)
Genome, Viral , Museums , Smallpox/virology , Variola virus/genetics , Czech Republic , DNA, Viral/genetics , Europe/epidemiology , Evolution, Molecular , High-Throughput Nucleotide Sequencing , History, 19th Century , History, 20th Century , Humans , India/epidemiology , Phylogeny , Polymerase Chain Reaction , Proteomics , Smallpox/epidemiology , Smallpox/history , Variola virus/classification
16.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 488-498, 2017 May.
Article in English | MEDLINE | ID: mdl-28216224

ABSTRACT

Breast cancer is the most common and molecularly relatively well characterized malignant disease in women, however, its progression to metastatic cancer remains lethal for 78% of patients 5years after diagnosis. Novel markers could identify the high risk patients and their verification using quantitative methods is essential to overcome genetic, inter-tumor and intra-tumor variability and translate novel findings into cancer diagnosis and treatment. We recently identified 13 proteins associated with estrogen receptor, tumor grade and lymph node status, the key factors of breast cancer aggressiveness, using untargeted proteomics. Here we verified these findings in the same set of 96 tumors using targeted proteomics based on selected reaction monitoring with mTRAQ labeling (mTRAQ-SRM), transcriptomics and immunohistochemistry and validated in 5 independent sets of 715 patients using transcriptomics. We confirmed: (i) positive association of anterior gradient protein 2 homolog (AGR2) and periostin (POSTN) and negative association of annexin A1 (ANXA1) with estrogen receptor status; (ii) positive association of stathmin (STMN1), cofilin-1 (COF1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1) and negative associations of thrombospondin-2 (TSP2) and POSTN levels with tumor grade; and (iii) positive association of POSTN, alpha-actinin-4 (ACTN4) and STMN1 with lymph node status. This study highlights a panel of gene products that can contribute to breast cancer aggressiveness and metastasis, the understanding of which is important for development of more precise breast cancer treatment.


Subject(s)
Actin Depolymerizing Factors/biosynthesis , Breast Neoplasms/genetics , Cell Adhesion Molecules/biosynthesis , RNA-Binding Proteins/biosynthesis , Stathmin/biosynthesis , Thrombospondins/biosynthesis , Actin Depolymerizing Factors/genetics , Adult , Aged , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Cell Adhesion Molecules/genetics , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphatic Metastasis , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Prognosis , Proteomics , RNA-Binding Proteins/genetics , Receptors, Estrogen/genetics , Stathmin/genetics , Thrombospondins/genetics
17.
Proteomics ; 14(21-22): 2400-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25156581

ABSTRACT

The posttranscriptional regulatory protein Hfq was shown to be an important determinant of the stress resistance and full virulence in the dangerous human pathogen Francisella tularensis. Transcriptomics brought rather limited clues to the precise contribution of Hfq in virulence. To reveal the molecular basis of the attenuation caused by hfq inactivation, we employed iTRAQ in the present study and compared proteomes of the parent and isogenic Δhfq strains. We show that Hfq modulates the level of 76 proteins. Most of them show decreased abundance in the ∆hfq mutant, thereby indicating that Hfq widely acts rather as a positive regulator of Francisella gene expression. Several key Francisella virulence factors including those encoded within the Francisella pathogenicity island were found among the downregulated proteins, which is in a good agreement with the attenuated phenotype of the Δhfq strain. To further validate the iTRAQ exploratory findings, we subsequently performed targeted LC-SRM analysis of selected proteins. This accurate quantification method corroborated the trends found in the iTRAQ data.


Subject(s)
Francisella tularensis/pathogenicity , Host Factor 1 Protein/genetics , Proteome/metabolism , Virulence Factors/genetics , Francisella tularensis/genetics , Francisella tularensis/metabolism , Gene Deletion , Host Factor 1 Protein/metabolism , Humans , Mass Spectrometry , Phenotype , Proteome/genetics , Tularemia/microbiology , Virulence Factors/metabolism
18.
J Proteomics ; 75(1): 257-69, 2011 Dec 10.
Article in English | MEDLINE | ID: mdl-21601022

ABSTRACT

The study of membrane proteins and membrane protein complexes (MPC) provides crucial information in the field of bacterial physiology and pathogenesis research. The method of blue native polyacrylamide gel electrophoresis and its combination with SDS-PAGE (BN/SDS-PAGE) were here employed to study the membrane complexome of an intracellular bacterium Francisella tularensis, the causative agent of a severe disease tularemia. In the presented study we describe the subunit composition and stoichiometry of several MPC involved in various cell functions (oxidative phosphorylation, membrane transport, cell division, membrane or periplasmic proteins folding, iron storage, phospholipid and cell envelope biosynthesis). Moreover, some undocumented or hypothetical MPC with possible connection to virulence factors were also proposed and some newly detected subunits were assigned to known complexes. The BN/SDS-PAGE combined with mass spectrometry appeared to be a strong tool in the investigation of membrane proteins and complexes and thus successfully complements the traditional electrophoresis approaches.


Subject(s)
Coloring Agents/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Francisella tularensis/metabolism , Membrane Proteins/analysis , Multiprotein Complexes/analysis , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Weight , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Tularemia/metabolism , Tularemia/pathology
19.
Microbiol Res ; 166(1): 47-62, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-20171065

ABSTRACT

Investigation of protein-protein interactions has arisen as a comprehensive approach for understanding bacterial physiology as well as pathogenesis. From this point of view, bacterial membrane as a place of contact with outer milieu seems to be crucial compartment and therefore, investigation of lipophilic proteins and their interactions is inevitable. Unfortunately, several methods developed for the analysis of protein interaction suffer from their labour intensiveness and underrepresent integral membrane proteins. Therefore, blue native polyacrylamide gel electrophoresis (BN-PAGE) with its simplicity and suitability for lipophilic entities has been widely employed in microbiological research. For investigation of membrane proteins interactions BN-PAGE became a method of choice. The efficacy in this area was proven by the elucidation not only of the stoichiometry, but also dynamic changes of several complexes involved in energetic metabolism, secretion and transport systems, localized both in inner as well as in outer membrane. Moreover, BN-PAGE was also successfully applied on peripheral membrane and cytoplasmic proteins and enabled complex analysis of interactomes of several microorganisms. This review shows BN-PAGE as a potent tool in microbiological fundamental research ranging from Archaea, through Gram-positive and Gram-negative bacteria to Chlamydia.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Electrophoresis, Polyacrylamide Gel , Membrane Proteins/metabolism , Protein Interaction Mapping/methods , Archaea/metabolism , Archaeal Proteins/metabolism , Bacteria/chemistry , Bacterial Proteins/analysis , Membrane Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...