Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Eur Phys J C Part Fields ; 80(11): 1037, 2020.
Article in English | MEDLINE | ID: mdl-33192171

ABSTRACT

Theoretical predictions with next-to-next-to-leading order (NNLO) QCD accuracy combined with the next-to-leading order (NLO) electroweak (EW) corrections are presented for differential observables of the double-Higgs production process via vector-boson fusion. While the QCD corrections were previously known, the EW ones are computed here for the first time. The numerical results are obtained for a realistic experimental set-up at the LHC and are presented in the form of fiducial cross sections and differential distributions. Within this setup we find that the VBF approximation employed in the NNLO QCD correction is accurate at the sub-percent level. We find that the NLO EW corrections within the fiducial volume are - 6.1 % , making them of almost the same order as the NLO QCD corrections. In some kinematic regions they can grow as large as - 30 % making them the dominant radiative corrections. When the EW corrections are combined with the NNLO QCD corrections we find a total correction of - 14.8 % . The results presented here thus comprise the state-of-the-art theoretical predicition for the double-Higgs production via vector-boson fusion, which will be of value to the high-luminosity programme at the LHC.

2.
Phys Rev Lett ; 125(5): 052002, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32794866

ABSTRACT

Parton showers are among the most widely used tools in collider physics. Despite their key importance, none so far have been able to demonstrate accuracy beyond a basic level known as leading logarithmic order, with ensuing limitations across a broad spectrum of physics applications. In this Letter, we propose criteria for showers to be considered next-to-leading logarithmic accurate. We then introduce new classes of shower, for final-state radiation, that satisfy the main elements of these criteria in the widely used large-N_{C} limit. As a proof of concept, we demonstrate these showers' agreement with all-order analytical next-to-leading logarithmic calculations for a range of observables, something never so far achieved for any parton shower.

3.
Phys Rev Lett ; 120(13): 139901, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29694213

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.115.082002.

4.
Phys Rev Lett ; 117(7): 072001, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563953

ABSTRACT

We calculate the next-to-next-to-next-to-leading-order (N^{3}LO) QCD corrections to inclusive vector-boson fusion Higgs production at proton colliders, in the limit in which there is no color exchange between the hadronic systems associated with the two colliding protons. We also provide differential cross sections for the Higgs transverse momentum and rapidity distributions. We find that the corrections are at the 1‰-2‰ level, well within the scale uncertainty of the next-to-next-to-leading-order calculation. The associated scale uncertainty of the N^{3}LO calculation is typically found to be below the 2‰ level. We also consider theoretical uncertainties due to missing higher order parton distribution functions, and provide an estimate of their importance.

5.
Phys Rev Lett ; 115(8): 082002, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26340183

ABSTRACT

We calculate the fully differential next-to-next-to-leading-order (NNLO) corrections to vector-boson fusion (VBF) Higgs boson production at proton colliders, in the limit in which there is no cross talk between the hadronic systems associated with the two protons. We achieve this using a new "projection-to-Born" method that combines an inclusive NNLO calculation in the structure-function approach and a suitably factorized next-to-leading-order VBF Higgs plus three-jet calculation, using appropriate Higgs plus two-parton counterevents. An earlier calculation of the fully inclusive cross section had found small NNLO corrections, at the 1% level. In contrast, the cross section after typical experimental VBF cuts receives NNLO contributions of about (5-6)%, while differential distributions show corrections of up to (10-12)% for some standard observables. The corrections are often outside the next-to-leading-order scale-uncertainty band.

SELECTION OF CITATIONS
SEARCH DETAIL