Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 17: 439-456, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35386449

ABSTRACT

Applying biodegradable osteosyntheses avoids the disadvantages of titanium osteosyntheses. However, foreign-body reactions remain a major concern and evidence of complete resorption is lacking. This study compared the physico-chemical properties, histological response and radiographs of four copolymeric biodegradable osteosynthesis systems in a goat model with 48-months follow-up. The systems were implanted subperiosteally in both tibia and radius of 12 Dutch White goats. The BioSorb FX [poly(70LLA-co-30DLLA)], Inion CPS [poly([70-78.5]LLA-co-[16-24]DLLA-co-4TMC)], SonicWeld Rx [poly(DLLA)], LactoSorb [poly(82LLA-co-18GA)] systems and a negative control were randomly implanted in each extremity. Samples were assessed at 6-, 12-, 18-, 24-, 36-, and 48-month follow-up. Surface topography was performed using scanning electron microscopy (SEM). Differential scanning calorimetry and gel permeation chromatography were performed on initial and explanted samples. Histological sections were systematically assessed by two blinded researchers using (polarized) light microscopy, SEM and energy-dispersive X-ray analysis. The SonicWeld Rx system was amorphous while the others were semi-crystalline. Foreign-body reactions were not observed during the complete follow-up. The SonicWeld Rx and LactoSorb systems reached bone percentages of negative controls after 18 months while the BioSorb Fx and Inion CPS systems reached these levels after 36 months. The SonicWeld Rx system showed the most predictable degradation profile. All the biodegradable systems were safe to use and well-tolerated (i.e., complete implant replacement by bone, no clinical or histological foreign body reactions, no [sterile] abscess formation, no re-interventions needed), but nanoscale residual polymeric fragments were observed at every system's assessment.

2.
Neurosurgery ; 84(3): 804-810, 2019 03 01.
Article in English | MEDLINE | ID: mdl-29659995

ABSTRACT

BACKGROUND: It is assumed that high pore densities in flow diverters (FDs) are beneficial for intracranial aneurysm (IA) healing. However, various animal studies are not conclusive on the issue, suggesting that other factors are in play. One important factor might be wall apposition. OBJECTIVE: To (1) determine the relationship between FD pore density and aneurysm occlusion, and (2) determine the relationship between FD wall apposition and aneurysm occlusion. METHODS: Saccular aneurysms were microsurgically created in the aorta of 36 Wistar rats. Twelve rats received a low pore density FD (10 pores/mm2), 12 rats received a high pore density FD (23 pores/mm2), and the remaining 12 rats served as a control group. Six animals from each group were sacrificed 1 and 3 mo after surgery. We determined aneurysm occlusion, the number of struts not in contact with the aorta wall, and the average distance from malapposed struts to aorta wall through histology. RESULTS: No significant differences were found in aneurysm occlusion between the low pore density and high pore density groups (P > .05) after 1 and 3 mo of follow-up. The average number of malapposed struts was lower for the occluded aneurysm group (4.4 ± 1.9) compared to the nonoccluded aneurysm group (7.7 ± 2.6, P < .01). The average distance between malapposed struts and parent artery wall was lower for the occluded aneurysm group (33.9 µm ± 11.5 µm) than for the nonoccluded aneurysm group (48.7 µm ± 18.8 µm, P < .05). CONCLUSION: Wall apposition is more important than pore density for aneurysm occlusion.


Subject(s)
Endovascular Procedures/instrumentation , Intracranial Aneurysm/surgery , Prostheses and Implants , Animals , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...