Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 34618, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698394

ABSTRACT

PRDM9 is currently the sole speciation gene found in vertebrates causing hybrid sterility probably due to incompatible alleles. Its role in defining the double strand break loci during the meiotic prophase I is crucial for proper chromosome segregation. Therefore, the rapid turnover of the loci determining zinc finger array seems to be causative for incompatibilities. We here investigated the zinc finger domain-containing exon of PRDM9 in 23 tarsiers. Tarsiers, the most basal extant haplorhine primates, exhibit two frameshifting indels at the 5'-end of the array. The first mutation event interrupts the reading frame and function while the second compensates both. The fixation of this allele variant in tarsiers led to hypothesize that de- and reactivation of the zinc finger domain drove the speciation in early haplorhine or tarsiiform primates. Moreover, the high allelic diversity within Tarsius points to multiple effects of genetic drift reflecting their phylogeographic history since the Miocene.


Subject(s)
Evolution, Molecular , Histone-Lysine N-Methyltransferase/genetics , INDEL Mutation , Tarsiidae/genetics , Animals , Protein Domains , Zinc Fingers
2.
PLoS One ; 10(11): e0141212, 2015.
Article in English | MEDLINE | ID: mdl-26559527

ABSTRACT

The Indonesian island of Sulawesi harbors a highly endemic and diverse fauna sparking fascination since long before Wallace's contemplation of biogeographical patterns in the region. Allopatric diversification driven by geological or climatic processes has been identified as the main mechanism shaping present faunal distribution on the island. There is both consensus and conflict among range patterns of terrestrial species pointing to the different effects of vicariant events on once co-distributed taxa. Tarsiers, small nocturnal primates with possible evidence of an Eocene fossil record on the Asian mainland, are at present exclusively found in insular Southeast Asia. Sulawesi is hotspot of tarsier diversity, whereby island colonization and subsequent radiation of this old endemic primate lineage remained largely enigmatic. To resolve the phylogeographic history of Sulawesi tarsiers we analyzed an island-wide sample for a set of five approved autosomal phylogenetic markers (ABCA1, ADORA3, AXIN1, RAG1, and TTR) and the paternally inherited SRY gene. We constructed ML and Bayesian phylogenetic trees and estimated divergence times between tarsier populations. We found that their arrival at the Proto-Sulawesi archipelago coincided with initial Miocene tectonic uplift and hypothesize that tarsiers dispersed over the region in distinct waves. Intra-island diversification was spurred by land emergence and a rapid succession of glacial cycles during the Plio-Pleistocene. Some tarsier range boundaries concur with spatial limits in other taxa backing the notion of centers of faunal endemism on Sulawesi. This congruence, however, has partially been superimposed by taxon-specific dispersal patterns.


Subject(s)
Biodiversity , Oceanography , Tarsiidae/classification , Animals , Indonesia , Molecular Sequence Data , Tarsiidae/genetics
3.
Proc Natl Acad Sci U S A ; 106(21): 8459-64, 2009 May 26.
Article in English | MEDLINE | ID: mdl-19451646

ABSTRACT

Because of their exceptionally long independent evolution, a range diminution of their Eocene relatives, and a remarkable subsequent diversification in Southeast Asia, tarsiers are of particular importance to evolutionary primatologists. Little is known, however, on the processes shaping the radiation of these small enigmatic primates-especially on the Indonesian island of Sulawesi, their center of endemism. Geological reconstructions and progress in applying DNA sequence information to divergence dating now provide us with the tools and background to comprehend tarsier dispersal. Here, we describe effects of plate-tectonic movements, Pleistocene sea level changes, and hybridization on the divergence of central Sulawesi tarsiers. We analyzed 12 microsatellites, the cytochrome b gene, the hypervariable region I of the mitochondrial control region, and the sex-determining region on the Y-chromosome from 144 specimens captured along a transect crossing a species boundary and a contact zone between 2 microplates. Based on these differentially inherited genetic markers, geographic information, and recordings of vocalizations, we demonstrate that the species boundary coincides with a tectonic suture. We estimate the most recent common ancestor of the 2 taxa to have lived 1.4 Mya, we describe asymmetrical introgressive hybridization, and we give evidence of unbiased dispersal in one species and male-biased dispersal in another species. This study exemplifies that the distribution of tarsier acoustic forms on Sulawesi is consistent with the allocation of genetic variability and that plate-tectonic and glacial events have left traceable marks in the biogeography of this island's unique fauna.


Subject(s)
Biological Phenomena , Geological Phenomena , Animals , Base Sequence , Evolution, Molecular , Genetic Variation/genetics , Indonesia , Mitochondria/genetics , Molecular Sequence Data , Phylogeny , Population Dynamics , Tarsiidae/classification , Tarsiidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...