Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 52(22): 6991-7002, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19860431

ABSTRACT

Norepinephrine (NE) amplifies the strength of descending pain inhibition, giving inhibitors of spinal NET clinical utility in the management of pain. chi-MrIA isolated from the venom of a predatory marine snail noncompetitively inhibits NET and reverses allodynia in rat models of neuropathic pain. An analogue of chi-MrIA has been found to be a suitable drug candidate. On the basis of the NMR solution structure of this related peptide, Xen2174 (3), and structure-activity relationships of analogues, a pharmacophore model for the allosteric binding of 3 to NET is proposed. It is shown that 3 interacts with NET predominantly through amino acids in the first loop, forming a tight inverse turn presenting amino acids Tyr7, Lys8, and Leu9 in an orientation allowing for high affinity interaction with NET. The second loop interacts with a large hydrophobic pocket within the transporter. Analogues based on the pharmacophore demonstrated activities that support the proposed model. On the basis of improved chemical stability and a wide therapeutic index, 3 was selected for further development and is currently in phase II clinical trials.


Subject(s)
Conotoxins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Pain/drug therapy , Peptides/chemistry , Peptides/pharmacology , Allosteric Regulation , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Drug Discovery , Drug Stability , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Pain/metabolism , Peptides/adverse effects , Peptides/metabolism , Rats , Structure-Activity Relationship
2.
Mol Pharmacol ; 71(3): 676-85, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17142296

ABSTRACT

Mu-conotoxins are three-loop peptides produced by cone snails to inhibit voltage-gated sodium channels during prey capture. Using polymerase chain reaction techniques, we identified a gene sequence from the venom duct of Conus tulipa encoding a new mu-conotoxin-TIIIA (TIIIA). A 125I-TIIIA binding assay was established to isolate native TIIIA from the crude venom of Conus striatus. The isolated peptide had three post-translational modifications, including two hydroxyproline residues and C-terminal amidation, and <35% homology to other mu-conotoxins. TIIIA potently displaced [3H]saxitoxin and 125I-TIIIA from rat brain (Nav1.2) and skeletal muscle (Nav1.4) membranes. Alanine and glutamine scans of TIIIA revealed several residues, including Arg14, that were critical for high-affinity binding to tetrodotoxin (TTX)-sensitive Na+ channels. We were surprised to find that [E15A]TIIIA had a 10-fold higher affinity than TIIIA for TTX-sensitive sodium channels (IC50, 15 vs. 148 pM at rat brain membrane). TIIIA was selective for Nav1.2 and -1.4 over Nav1.3, -1.5, -1.7, and -1.8 expressed in Xenopus laevis oocytes and had no effect on rat dorsal root ganglion neuron Na+ current. 1H NMR studies revealed that TIIIA adopted a single conformation in solution that was similar to the major conformation described previously for mu-conotoxin PIIIA. TIIIA and analogs provide new biochemical probes as well as insights into the structure-activity of mu-conotoxins.


Subject(s)
Conotoxins/isolation & purification , Sodium Channel Blockers/isolation & purification , Tetrodotoxin/pharmacology , Amino Acid Sequence , Animals , Conotoxins/chemistry , Conotoxins/pharmacology , Conus Snail , Female , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mollusk Venoms/analysis , Radioligand Assay , Rats , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/pharmacology , Structure-Activity Relationship , Xenopus laevis
3.
Pain ; 118(1-2): 112-24, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16154696

ABSTRACT

Xen2174 is a structural analogue of Mr1A, a chi-conopeptide recently isolated from the venom of the marine cone snail, Conus marmoreus. Although both chi-conopeptides are highly selective inhibitors of the norepinephrine transporter (NET), Xen2174 has superior chemical stability relative to Mr1A. It is well-known that tricyclic antidepressants (TCAs) are also potent NET inhibitors, but their poor selectivity relative to other monoamine transporters and various G-protein-coupled receptors, results in dose-limiting side-effects in vivo. As TCAs and the alpha(2)-adrenoceptor agonist, clonidine, have established efficacy for the relief of neuropathic pain, this study examined whether intrathecal (i.t.) Xen2174 alleviated mechanical allodynia in rats with either a chronic constriction injury of the sciatic nerve (CCI-rats) or an L5/L6 spinal-nerve injury. The anti-allodynic responses of i.t. Mr1A and i.t. morphine were also investigated in CCI-rats. Paw withdrawal thresholds were assessed using calibrated von Frey filaments. Bolus doses of i.t. Xen2174 produced dose-dependent relief of mechanical allodynia in CCI-rats and in spinal nerve-ligated rats. Dose-dependent anti-allodynic effects were also produced by i.t. bolus doses of Mr1A and morphine in CCI-rats, but a pronounced 'ceiling' effect was observed for i.t. morphine. The side-effect profiles were mild for both chi-conopeptides with an absence of sedation. Confirming the noradrenergic mechanism of action, i.t. co-administration of yohimbine (100 nmol) with Xen2174 (10 nmol) abolished Xen2174s anti-allodynic actions. Xen2174 appears to be a promising candidate for development as a novel therapeutic for i.t. administration to patients with persistent neuropathic pain.


Subject(s)
Conotoxins/therapeutic use , Neuralgia/drug therapy , Peptides/therapeutic use , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Animals , Conotoxins/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Injections, Spinal , Male , Morphine/pharmacology , Morphine/therapeutic use , Neuralgia/physiopathology , Neuralgia/prevention & control , Norepinephrine Plasma Membrane Transport Proteins/drug effects , Norepinephrine Plasma Membrane Transport Proteins/physiology , Peptides/pharmacology , Physical Stimulation , Rats , Rats, Sprague-Dawley , Sciatic Neuropathy/drug therapy , Sciatic Neuropathy/physiopathology , Sciatic Neuropathy/prevention & control , Spinal Nerves/physiopathology
4.
Peptides ; 26(1): 131-9, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15626513

ABSTRACT

Spiders, scorpions, and cone snails are remarkable for the extent and diversity of gene-encoded peptide neurotoxins that are expressed in their venom glands. These toxins are produced in the form of structurally constrained combinatorial peptide libraries in which there is hypermutation of essentially all residues in the mature-toxin sequence with the exception of a handful of strictly conserved cysteines that direct the three-dimensional fold of the toxin. This gene-based combinatorial peptide library strategy appears to have been first implemented by arachnids almost 400 million years ago, long before cone snails evolved a similar mechanism for generating peptide diversity.


Subject(s)
Arachnida/metabolism , Animals , Arachnida/genetics , Conotoxins/metabolism , Evolution, Molecular , Peptide Library , Peptides/metabolism , Scorpion Venoms/metabolism , Spider Venoms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL