Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(11): 1914-1929, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652999

ABSTRACT

The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.


Subject(s)
Tigers , Animals , Tigers/genetics , DNA, Ancient , Phylogeny , Russia , China
2.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: mdl-34162544

ABSTRACT

The Qinghai-Tibet Plateau endemic Chinese mountain cat has a controversial taxonomic status, whether it is a true species or a wildcat (Felis silvestris) subspecies and whether it has contributed to cat (F. s. catus) domestication in East Asia. Here, we sampled F. silvestris lineages across China and sequenced 51 nuclear genomes, 55 mitogenomes, and multilocus regions from 270 modern or museum specimens. Genome-wide analyses classified the Chinese mountain cat as a wildcat conspecific F. s. bieti, which was not involved in cat domestication of China, thus supporting a single domestication origin arising from the African wildcat (F. s. lybica). A complex hybridization scenario including ancient introgression from the Asiatic wildcat (F. s. ornata) to F. s. bieti, and contemporary gene flow between F. s. bieti and sympatric domestic cats that are likely recent Plateau arrivals, raises the prospect of disrupted wildcat genetic integrity, an issue with profound conservation implications.

4.
Proc Natl Acad Sci U S A ; 114(44): 11769-11774, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078292

ABSTRACT

Adaptations to stress can occur through epigenetic processes and may be a conduit for informing offspring of environmental challenge. We employed ChIP-sequencing for H3K4me3 to examine effects of early maternal deprivation (peer-rearing, PR) in archived rhesus macaque hippocampal samples (male, n = 13). Focusing on genes with roles in stress response and behavior, we assessed the effects of rearing on H3K4me3 binding by ANOVA. We found decreased H3K4me3 binding at genes critical to behavioral stress response, the most robust being the oxytocin receptor gene OXTR, for which we observed a corresponding decrease in RNA expression. Based on this finding, we performed behavioral analyses to determine whether a gain-of-function nonsynonymous OXTR SNP interacted with early stress to influence relevant behavioral stress reactivity phenotypes (n = 194), revealing that this SNP partially rescued the PR phenotype. PR infants exhibited higher levels of separation anxiety and arousal in response to social separation, but infants carrying the alternative OXTR allele did not exhibit as great a separation response. These data indicate that the oxytocin system is involved in social-separation response and suggest that epigenetic down-modulation of OXTR could contribute to behavioral differences observed in PR animals. Epigenetic changes at OXTR may represent predictive adaptive responses that could impart readiness to respond to environmental challenge or maintain proximity to a caregiver but also contribute to behavioral pathology. Our data also demonstrate that OXTR polymorphism can permit animals to partially overcome the detrimental effects of early maternal deprivation, which could have translational implications for human psychiatric disorders.


Subject(s)
Epigenesis, Genetic/genetics , Macaca mulatta/genetics , Receptors, Oxytocin/genetics , Adaptation, Psychological/physiology , Alleles , Animals , Anxiety, Separation/genetics , Female , Hippocampus/metabolism , Histones/genetics , Male , Maternal Deprivation , Oxytocin/genetics , Polymorphism, Single Nucleotide/genetics , Stress, Physiological/genetics
5.
J Hered ; 108(6): 671-677, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28821181

ABSTRACT

The dwindling wildlife species of our planet have become a cause célèbre for conservation groups, governments, and concerned citizens throughout the world. The application of powerful new genetic technologies to surviving populations of threatened mammals has revolutionized our ability to recognize hidden perils that afflict them. We have learned new lessons of survival, adaptation, and evolution from viewing the natural history of genomes in hundreds of detailed studies. A single case history of one species, the African cheetah, Acinonyx jubatus, is here reviewed to reveal a long-term story of conservation challenges and action informed by genetic discoveries and insights. A synthesis of 3 decades of data, interpretation, and controversy, capped by whole genome sequence analysis of cheetahs, provides a compelling tale of conservation relevance and action to protect this species and other threatened wildlife.


Subject(s)
Acinonyx/genetics , Conservation of Natural Resources , Genetic Variation , Genetics, Population , Animals , Animals, Wild/genetics , Genome
6.
J Hered ; 108(6): 678-685, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28821189

ABSTRACT

The de novo assembly of the red fox (Vulpes vulpes) genome has facilitated the development of genomic tools for the species. Efforts to identify the population history of red foxes in North America have previously been limited by a lack of information about the red fox Y-chromosome sequence. However, a megabase of red fox Y-chromosome sequence was recently identified over 2 scaffolds in the reference genome. Here, these scaffolds were scanned for repeated motifs, revealing 194 likely microsatellites. Twenty-three of these loci were selected for primer development and, after testing, produced a panel of 11 novel markers that were analyzed alongside 2 markers previously developed for the red fox from dog Y-chromosome sequence. The markers were genotyped in 76 male red foxes from 4 populations: 7 foxes from Newfoundland (eastern Canada), 12 from Maryland (eastern United States), and 9 from the island of Great Britain, as well as 48 foxes of known North American origin maintained on an experimental farm in Novosibirsk, Russia. The full marker panel revealed 22 haplotypes among these red foxes, whereas the 2 previously known markers alone would have identified only 10 haplotypes. The haplotypes from the 4 populations clustered primarily by continent, but unidirectional gene flow from Great Britain and farm populations may influence haplotype diversity in the Maryland population. The development of new markers has increased the resolution at which red fox Y-chromosome diversity can be analyzed and provides insight into the contribution of males to red fox population diversity and patterns of phylogeography.


Subject(s)
Foxes/genetics , Genetic Markers , Genetics, Population , Y Chromosome/genetics , Animals , DNA Primers , Gene Flow , Haplotypes , Male , Maryland , Microsatellite Repeats , Newfoundland and Labrador , Phylogeography , Russia , Sequence Analysis, DNA , United Kingdom
7.
Addict Biol ; 22(6): 1655-1664, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27484010

ABSTRACT

Although the notion that alcohol promotes violence is widespread, not all individuals are aggressive while intoxicated. Genetic variation could be a contributing factor to individual differences in alcohol-heightened aggression. The present study examines the effects of OPRM1C77G genotype on responses to threat in rhesus macaques under normal conditions and following alcohol administration. Prior studies have shown that a low CSF level of 5-HIAA is a trait marker for individuals prone to escalated aggression. We wanted to examine whether the predictive value for this marker on aggression was moderated by OPRM1 genotype. Animals were administered alcohol (BAC 100-200 mg%), were provoked by a human intruder, and aggressive responses were recorded. Factor analysis was performed to generate aggressive response factors, which were then used as dependent variables for ANOVA, with OPRM1 genotype and CSF 5-HIAA as independent variables. Factor analysis generated three factors ('Threatening', 'Distance Decreasing' and 'High Intensity'). We found that High Intensity aggression was increased among carriers of the OPRM1 G allele, especially among individuals with low CSF levels of 5-HIAA. Aggression in the non-intoxicated state was predicted by 5-HIAA, but not by genotype. This study demonstrates that OPRM1 genotype predicts alcohol-heightened aggression in rhesus macaques with low CSF levels of 5-HIAA. Because OPRM1 variation predicts similar effects on alcohol response and behavior in humans and macaques, this study could suggest a role for OPRM1 genotype in alcohol-heightened aggression in humans. If so, it may be that compounds that block this receptor could reduce alcohol-associated violence in selected patient populations.


Subject(s)
Aggression/drug effects , Behavior, Animal/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Receptors, Opioid, mu/genetics , Serotonin/cerebrospinal fluid , Animals , Female , Genotype , Macaca mulatta , Male , Models, Animal
9.
Neurosci Res ; 102: 67-77, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26276350

ABSTRACT

Many forms of psychopathology and/or psychiatric illness can occur through the pathways of altered environmental sensitivity, impulsivity, social functioning, and anxious responding. While these traits are also heritable, environmental conditions are known to play a critical role. The genetic factors that contribute to these traits may be adaptive in certain contexts, but can - under the environmental conditions commonly faced among modern humans - also be key moderators of risk for psychopathological outcomes. This article will discuss how animal studies inform us of the various environmental mechanisms through which prenatal or early postnatal environmental challenge can produce long-term effects on behavior and will briefly address how pre-copulatory, pre-natal and early postnatal epigenetic effects can contribute to persistent alterations in offspring behavior. Its main focus will be how nonhuman primate studies have helped us to understand how genetic vulnerability factors can moderate responses to early environmental factors, suggesting pathways through which early stress might produce long-term effects, thus pointing to systems that might moderate risk for psychiatric illnesses in humans.


Subject(s)
Disease Models, Animal , Mental Disorders/psychology , Animals , Behavior, Animal , Empathy , Epigenesis, Genetic , Female , Gene-Environment Interaction , Humans , Impulsive Behavior , Maternal Deprivation , Mental Disorders/genetics , Pregnancy , Pregnancy Complications/psychology , Social Behavior , Stress, Psychological/psychology , Time Factors
10.
PLoS One ; 10(10): e0137975, 2015.
Article in English | MEDLINE | ID: mdl-26466139

ABSTRACT

The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Markers/genetics , Lions/genetics , Africa, Central , Africa, Western , Animals , Biological Evolution , Cluster Analysis , Conservation of Natural Resources , Evolution, Molecular , Genetic Variation , Geography , Microsatellite Repeats/genetics , Phylogeny , Phylogeography , Principal Component Analysis , Species Specificity
11.
J Hered ; 106(3): 247-57, 2015.
Article in English | MEDLINE | ID: mdl-25754539

ABSTRACT

The Bali (Panthera tigris balica) and Javan (P. t. sondaica) tigers are recognized as distinct tiger subspecies that went extinct in the 1940s and 1980s, respectively. Yet their genetic ancestry and taxonomic status remain controversial. Following ancient DNA procedures, we generated concatenated 1750bp mtDNA sequences from 23 museum samples including 11 voucher specimens from Java and Bali and compared these to diagnostic mtDNA sequences from 122 specimens of living tiger subspecies and the extinct Caspian tiger. The results revealed a close genetic affinity of the 3 groups from the Sunda Islands (Bali, Javan, and Sumatran tigers P. t. sumatrae). Bali and Javan mtDNA haplotypes differ from Sumatran haplotypes by 1-2 nucleotides, and the 3 island populations define a monophyletic assemblage distinctive and equidistant from other mainland subspecies. Despite this close phylogenetic relationship, no mtDNA haplotype was shared between Sumatran and Javan/Bali tigers, indicating little or no matrilineal gene flow among the islands after they were colonized. The close phylogenetic relationship among Sunda tiger subspecies suggests either recent colonization across the islands, or else a once continuous tiger population that had subsequently isolated into different island subspecies. This supports the hypothesis that the Sumatran tiger is the closest living relative to the extinct Javan and Bali tigers.


Subject(s)
Extinction, Biological , Genetics, Population , Phylogeny , Tigers/genetics , Animals , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Gene Flow , Haplotypes , Sequence Analysis, DNA
12.
Proc Natl Acad Sci U S A ; 111(48): 17230-5, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25385592

ABSTRACT

Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.


Subject(s)
Animals, Domestic/genetics , Animals, Wild/genetics , Cats/genetics , Genome/genetics , Genomics/methods , Adaptation, Physiological/genetics , Amino Acid Sequence , Animals , Carnivory , Cats/classification , Chromosome Mapping , DNA Copy Number Variations , Dogs , Female , Gene Deletion , Gene Duplication , Male , Membrane Transport Proteins/classification , Membrane Transport Proteins/genetics , Molecular Sequence Data , Phylogeny , Selection, Genetic/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity
13.
Gigascience ; 3: 13, 2014.
Article in English | MEDLINE | ID: mdl-25143822

ABSTRACT

BACKGROUND: Domestic cats enjoy an extensive veterinary medical surveillance which has described nearly 250 genetic diseases analogous to human disorders. Feline infectious agents offer powerful natural models of deadly human diseases, which include feline immunodeficiency virus, feline sarcoma virus and feline leukemia virus. A rich veterinary literature of feline disease pathogenesis and the demonstration of a highly conserved ancestral mammal genome organization make the cat genome annotation a highly informative resource that facilitates multifaceted research endeavors. FINDINGS: Here we report a preliminary annotation of the whole genome sequence of Cinnamon, a domestic cat living in Columbia (MO, USA), bisulfite sequencing of Boris, a male cat from St. Petersburg (Russia), and light 30× sequencing of Sylvester, a European wildcat progenitor of cat domestication. The annotation includes 21,865 protein-coding genes identified by a comparative approach, 217 loci of endogenous retrovirus-like elements, repetitive elements which comprise about 55.7% of the whole genome, 99,494 new SNVs, 8,355 new indels, 743,326 evolutionary constrained elements, and 3,182 microRNA homologues. The methylation sites study shows that 10.5% of cat genome cytosines are methylated. An assisted assembly of a European wildcat, Felis silvestris silvestris, was performed; variants between F. silvestris and F. catus genomes were derived and compared to F. catus. CONCLUSIONS: The presented genome annotation extends beyond earlier ones by closing gaps of sequence that were unavoidable with previous low-coverage shotgun genome sequencing. The assembly and its annotation offer an important resource for connecting the rich veterinary and natural history of cats to genome discovery.

14.
J Hered ; 104(6): 765-78, 2013.
Article in English | MEDLINE | ID: mdl-24129993

ABSTRACT

Globally distributed, the bottlenose dolphin (Tursiops truncatus) is found in a range of offshore and coastal habitats. Using 15 microsatellite loci and mtDNA control region sequences, we investigated patterns of genetic differentiation among putative populations along the eastern US shoreline (the Indian River Lagoon, Florida, and Charleston Harbor, South Carolina) (microsatellite analyses: n = 125, mtDNA analyses: n = 132). We further utilized the mtDNA to compare these populations with those from the Northwest Atlantic, Gulf of Mexico, and Caribbean. Results showed strong differentiation among inshore, alongshore, and offshore habitats (ФST = 0.744). In addition, Bayesian clustering analyses revealed the presence of 2 genetic clusters (populations) within the 250 km Indian River Lagoon. Habitat heterogeneity is likely an important force diversifying bottlenose dolphin populations through its influence on social behavior and foraging strategy. We propose that the spatial pattern of genetic variation within the lagoon reflects both its steep longitudinal transition of climate and also its historical discontinuity and recent connection as part of Intracoastal Waterway development. These findings have important management implications as they emphasize the role of habitat and the consequence of its modification in shaping bottlenose dolphin population structure and highlight the possibility of multiple management units existing in discrete inshore habitats along the entire eastern US shoreline.


Subject(s)
Bottle-Nosed Dolphin/genetics , Alleles , Animals , Bottle-Nosed Dolphin/classification , DNA, Mitochondrial/genetics , Ecosystem , Evolution, Molecular , Female , Genetic Variation , Genetics, Population , Genotype , Male , Microsatellite Repeats/genetics , Molecular Sequence Data , Phylogeny , Phylogeography , Population Dynamics , Southeastern United States
16.
J Biol ; 9(2): 10, 2010.
Article in English | MEDLINE | ID: mdl-20236496

ABSTRACT

A phylogeographic analysis of gene sequences important in determining body size in dogs, recently published in BMC Biology, traces the appearance of small body size to the Neolithic Middle East. This finding strengthens the association of this event with the development of sedentary societies, and perhaps even has implications for the inception of human social inequality.


Subject(s)
Animals, Domestic/genetics , Socioeconomic Factors/history , Wolves/genetics , Adaptation, Biological , Animals , Biological Evolution , DNA, Mitochondrial/chemistry , Dogs , History, Ancient , Humans , Middle East
18.
Proc Natl Acad Sci U S A ; 106 Suppl 1: 9971-8, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19528637

ABSTRACT

Artificial selection is the selection of advantageous natural variation for human ends and is the mechanism by which most domestic species evolved. Most domesticates have their origin in one of a few historic centers of domestication as farm animals. Two notable exceptions are cats and dogs. Wolf domestication was initiated late in the Mesolithic when humans were nomadic hunter-gatherers. Those wolves less afraid of humans scavenged nomadic hunting camps and over time developed utility, initially as guards warning of approaching animals or other nomadic bands and soon thereafter as hunters, an attribute tuned by artificial selection. The first domestic cats had limited utility and initiated their domestication among the earliest agricultural Neolithic settlements in the Near East. Wildcat domestication occurred through a self-selective process in which behavioral reproductive isolation evolved as a correlated character of assortative mating coupled to habitat choice for urban environments. Eurasian wildcats initiated domestication and their evolution to companion animals was initially a process of natural, rather than artificial, selection over time driven during their sympatry with forbear wildcats.


Subject(s)
Animals, Domestic/physiology , Biological Evolution , Cats/physiology , Dogs/physiology , Animals , Humans , Sexual Behavior, Animal/physiology
19.
PLoS One ; 4(1): e4125, 2009.
Article in English | MEDLINE | ID: mdl-19142238

ABSTRACT

The Caspian tiger (Panthera tigris virgata) flourished in Central Asian riverine forest systems in a range disjunct from that of other tigers, but was driven to extinction in 1970 prior to a modern molecular evaluation. For over a century naturalists puzzled over the taxonomic validity, placement, and biogeographic origin of this enigmatic animal. Using ancient-DNA (aDNA) methodology, we generated composite mtDNA haplotypes from twenty wild Caspian tigers from throughout their historic range sampled from museum collections. We found that Caspian tigers carry a major mtDNA haplotype differing by only a single nucleotide from the monomorphic haplotype found across all contemporary Amur tigers (P. t. altaica). Phylogeographic analysis with extant tiger subspecies suggests that less than 10,000 years ago the Caspian/Amur tiger ancestor colonized Central Asia via the Gansu Corridor (Silk Road) from eastern China then subsequently traversed Siberia eastward to establish the Amur tiger in the Russian Far East. The conservation implications of these findings are far reaching, as the observed genetic depletion characteristic of modern Amur tigers likely reflects these founder migrations and therefore predates human influence. Also, due to their evolutionary propinquity, living Amur tigers offer an appropriate genetic source should reintroductions to the former range of the Caspian tiger be implemented.


Subject(s)
Biological Evolution , DNA, Mitochondrial/genetics , Phylogeny , Tigers/genetics , Animals , Asia, Central , China , Extinction, Biological , Geography , Haplotypes , Siberia , Tigers/classification
20.
Science ; 317(5837): 519-23, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17600185

ABSTRACT

The world's domestic cats carry patterns of sequence variation in their genome that reflect a history of domestication and breed development. A genetic assessment of 979 domestic cats and their wild progenitors-Felis silvestris silvestris (European wildcat), F. s. lybica (Near Eastern wildcat), F. s. ornata (central Asian wildcat), F. s. cafra (southern African wildcat), and F. s. bieti (Chinese desert cat)-indicated that each wild group represents a distinctive subspecies of Felis silvestris. Further analysis revealed that cats were domesticated in the Near East, probably coincident with agricultural village development in the Fertile Crescent. Domestic cats derive from at least five founders from across this region, whose descendants were transported across the world by human assistance.


Subject(s)
Animals, Domestic/genetics , Cats/classification , Cats/genetics , Phylogeny , Africa , Animals , Animals, Wild/genetics , DNA, Mitochondrial/genetics , Europe , Haplotypes , Hybridization, Genetic , Microsatellite Repeats , Middle East , Molecular Sequence Data , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...