Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 351: 141101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171396

ABSTRACT

Waterborne pathogenic viruses present unrelenting challenges to the global health and wastewater treatment industry. Phytoremediation offers promising solutions for wastewater treatment through plant-based technologies. This study investigated antiviral mechanisms in-vivo using bacteriophages MS2 and T4 as surrogates for effective herbs screened in-vitro from three embryophytes (Ocimum basilicum, Mentha sp., Plectranthus amboinicus), two macrophytes (Eichhornia crassipes, Pistia stratiotes) and a perennial grass (Cyperus rotundas). In-silico virtual screening predicted antiviral phytochemicals for further antiviral potency assessment. Results suggested in-vitro antiviral activities of embryophytes and macrophytes were higher (43-62%) than grass (21-26%). O. basilicum (OB, 57-62%) and P. stratiotes (PS, 59-60%) exhibited the highest antiviral activities. In-vivo tests showed notable virus reduction (>60%) in culture solution, attributed to rhizofiltration (66-74%) and phytoinactivation/phytodegradation (63-84%). In-silico analysis identified rutin as a primary antiviral phytochemical for MS2 (-9.7 kcal/mol) and T4 (-10.9 kcal/mol), correlating with dose-response inactivation (∼58-62%). In-vivo tests suggested additional phytocompounds may contribute to viral inactivation, presenting new opportunities for herb-based wastewater treatment solutions. Consequently, this study not only demonstrates the antiviral capabilities of OB and PS but also introduces an innovative approach for addressing viral contaminants in water.


Subject(s)
Araceae , Eichhornia , Water Pollutants, Chemical , Biodegradation, Environmental , Water Pollutants, Chemical/analysis , Plants/metabolism , Eichhornia/metabolism , Araceae/metabolism , Poaceae/metabolism , Levivirus , Antiviral Agents/pharmacology
2.
Mar Pollut Bull ; 196: 115661, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37898017

ABSTRACT

The rapid expansion of the aquaculture industry raises concerns about water pollution from aquaculture production facilities (APFs). APFs release pollutants, including fish feed and feces, threatening the environment. The United Nations has introduced regulatory tools like the National Baseline Budget of pollutants (NBB) and Pollutant Release and Transfer Registers (PRTRs) to monitor pollution. However, these tools lack specific capabilities for estimating aquaculture-related pollution, especially from mariculture non-point sources (NPS). The United Nations Programme for the Assessment and Control of Marine Pollution in the Mediterranean (UNEP/MAP) stresses the need for an inventory and guidance document. Our comprehensive literature review focused on (1) NPS discharges of specific pollutants from APFs, (2) methods for estimating potential pollution releases from aquaculture, and (3) compiling information into a guidance document summarizing estimation methods. The geographical coverage of our study includes Europe, Australia, the USA, Canada, and East/Southeast Asia.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Water Pollution , Aquaculture/methods , Australia , Water Pollutants, Chemical/analysis
3.
Environ Entomol ; 43(2): 283-90, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24534015

ABSTRACT

Wetlands function as buffers between terrestrial and aquatic ecosystems, filtering pollutants generated by human activity. Constructed wetlands were developed to mimic the physical and biological filtering functions of natural systems for the treatment of human and animal waste under controlled conditions. Previous studies on the effect of constructed wetlands on native invertebrate populations have concentrated almost exclusively on mosquitoes. Here, we present the first study investigating the relationship between vegetation cover and aeration regime, and the diversity and abundance of nematodes and springtails (Collembola) in a constructed wetland designed to treat dairy farm wastewater in northwestern Vermont. We investigated four treatment cells differing in aeration regime and vegetation cover, but equally overlaid by a layer of compost to provide insulation. Analysis showed that nematodes were most abundant in the nonplanted and nonaerated cells, and that bacterivorous nematodes dominated the community in all cells. Springtails were found to be most numerous in the planted and nonaerated cells. We hypothesize that the vegetation provided differing environmental niches that supported a more diverse system of bacteria and fungi, as well as offering protection from predators and inclement weather. Nematodes were likely imported with the original compost material, while springtails migrated into the cells either via air, water, or direct locomotion.


Subject(s)
Biodiversity , Environment, Controlled , Insecta/physiology , Nematoda/physiology , Waste Disposal, Fluid/methods , Wetlands , Animals , Dairying , Poaceae/growth & development , Population Dynamics , Vermont
4.
Water Res ; 47(16): 6289-97, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24001604

ABSTRACT

The organic matter released from septic tanks can disturb the subsequent step in on-site wastewater treatment such as the innovative filters for phosphorus removal. This study investigated the effect of organic load on phosphorus (P) and bacteria removal by reactive filter materials under real-life treatment conditions. Two long-term column experiments were conducted at very short hydraulic residence times (average ~5.5 h), using wastewater with high (mean ~120 mg L(-1)) and low (mean ~20 mg L(-1)) BOD7 values. Two alkaline filter materials, the calcium-silicate material Polonite and blast furnace slag (BFS), were tested for the removal capacity of total P, total organic carbon (TOC) and Enterococci. Both experiments showed that Polonite removed P significantly (p < 0.01) better than BFS. An increase in P removal efficiency of 29.3% was observed for the Polonite filter at the lower concentration of BOD7 (p < 0.05). Polonite was also better than BFS with regard to removal of TOC, but there were no significant differences between the two filter materials with regard to removal of Enterococci. The reduction in Enterococci was greater in the experiment using wastewater with high BOD7, an effect attributable to the higher concentration of bacteria in that wastewater. Overall, the results demonstrate the importance of extensive pre-treatment of wastewater to achieve good phosphorus removal in reactive bed filters and prolonged filter life.


Subject(s)
Bacteria/isolation & purification , Filtration , Phosphorus/isolation & purification , Wastewater/chemistry , Water Purification/methods , Waste Disposal, Fluid , Wastewater/microbiology
5.
Water Res ; 44(14): 4077-86, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20566211

ABSTRACT

The performance and temporal variation of three hybrid and three integrated, saturated flow, pilot-scale constructed wetlands (CWs) were tested for treating dairy farm effluent. The three hybrid systems each consisted of two CWs in-series, with horizontal and vertical flow. Integrated systems consisted of a CW (horizontal and vertical flow) followed by a steel slag filter for removing phosphorus. Time series temporal semivariogram analyses of measured water parameters illustrated different treatment efficiencies existed over the course of one season. As a result, data were then divided into separate time period groups and CW systems were compared using ANOVA for parameter measurements within each distinct time period group. Both hybrid and integrated CWs were efficient in removing organics; however, hybrid systems had significantly higher performance (p<0.05) during peak vegetation growth. Compared to hybrid CWs, integrated CWs achieved significantly higher DRP reduction (p<0.05) throughout the period of investigation and higher ammonia reduction (p<0.05) in integrated CWs was observed in late summer. Geochemical modeling demonstrates hydroxyapatite and vivianite minerals forming on steel slag likely control the fate of phosphate ions given the reducing conditions prevalent in the system. The model also demonstrates how the wastewater:slag ratio can be adjusted to maximize phosphorus removal while staying at a near-neutral pH.


Subject(s)
Dairying , Industrial Waste/prevention & control , Phosphorus/isolation & purification , Water Purification/methods , Wetlands , Filtration/instrumentation , Pilot Projects , Steel/chemistry , Waste Disposal, Fluid/methods , Water Purification/instrumentation
7.
Article in English | MEDLINE | ID: mdl-20183504

ABSTRACT

Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter reaches its saturation point, the material could be re-used as soil amendment for the slow release of bioavailable P with minimal risk for loss of P to surface runoff, bringing further benefits to the environment.


Subject(s)
Agriculture/methods , Fertilizers/analysis , Medicago sativa/chemistry , Metallurgy , Phosphorus/analysis , Soil/analysis , Waste Products/analysis , Biomass , Filtration , Medicago sativa/growth & development , Phosphorus/isolation & purification , Quebec
8.
Environ Sci Technol ; 42(16): 6191-7, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18767686

ABSTRACT

The purpose of this research was to investigate phosphorus (P) retention capacity and rejuvenation potential of electric arc furnace (EAF) steel slag from Quebec and New Zealand (NZ) iron melter slag (IMS). Columns filled with slag materials were fed with dairy effluent and subjected to two feeding and one resting cycle(s). P retention capacities and rejuvenation potentials were determined after each feeding cycle. Elemental composition and mineralogical analysis were performed on IMS samples. Finally, chemical fractionation analysis was conducted on both NZ IMS and Quebec EAF steel slags. The results revealed that initiating a resting period in EAF steel slag filters prior to reaching their P saturation point increased the overall filter P retention capacity by 49.5 and 42.4% compared to 28% in a filter which had its resting period initiated after reaching P saturation. The rejuvenation property could play a significant role in full-scale applications by prolonging life expectancy and increasing cost efficiency. P retention and rejuvenation by NZ slag materials was negligible relative to EAF steel slag material from Quebec. Chemical fractionation analysis revealed differences between materials, indicating that the highest quantities of P were bound to Ca and Fe in EAF steel slag and to Ca and Al fractions in iron melter slag. This study also demonstrates that slag's performance is dependent on the source of the material and the steel making practices. Therefore, testing of the P adsorptive capability and, if relevant, the rejuvenation potential of individual steel mill slags, should be a prerequisite prior to their use in field applications.


Subject(s)
Industrial Waste/analysis , Phosphorus/chemistry , Steel/chemistry , Agriculture , Animals , Cattle , Environmental Pollutants/chemistry , Waste Disposal, Fluid
9.
Water Res ; 40(17): 3209-18, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16945401

ABSTRACT

Conservative tracer experiments, and spatial temperature and dissolved oxygen mapping within four subsurface treatment wetlands employed in this study demonstrated the importance of supplemental aeration and vegetation in reducing preferential flows in cold climate treatment wetlands. Four constructed wetlands, employing horizontal subsurface flow were used to treat dairy wastewater in a 2 x 2 factorial design consisting of two wetland cells with vegetation and two with supplemental aeration. Four tracer studies were conducted between November 2004 and May 2005. Two key observations were made, demonstrating that vegetation and aeration can be utilized in cold regions to prevent clogging and freezing, thereby reducing preferential flow paths which can reduce treatment efficiencies: (1) vegetation contributed to thermal protection and (2) aeration increased temperature and mixing. A comparison of multiple wetland cells with varying flow rates showed that the use of pore volume in tracer response curves was a better indicator of preferential flows than other indicators including volumetric efficiency, hydraulic efficiency and number of continuosly stirred tank reactors (CSTRs). This research helps further establish how constructed wetlands are a viable tool for treating wastewater in cold climates.


Subject(s)
Climate , Cold Temperature , Dairying , Industrial Waste , Wetlands , Air , Oxygen/chemistry , Plants
10.
Water Res ; 40(8): 1547-54, 2006 May.
Article in English | MEDLINE | ID: mdl-16564560

ABSTRACT

Electric arc furnace (EAF) steel slag and serpentinite were tested in columns either alone or mixed with limestone to determine their capacity to remove phosphorus (P) from a solution containing initially 20mg P/L (for 114 days) than 400mg P/L (for 21 days). EAF steel slag was nearly 100% efficient due to specific P adsorption onto metal hydroxides and precipitation of hydroxyapatite. Serpentinite also showed a good performance that decreased with time, adsorption appearing to be the dominant mechanism for P removal. Mixing limestone with these two materials did not improve their performance and in the case of serpentinite, it actually even decreased it. In 114 days of experimentation, serpentinite alone and the mixture of serpentinite and limestone removed 1.0mg P/g while in 180 days of experimentation, EAF steel slag and the mixture of slag and limestone removed an average of 2.2mg P/g, without attaining their maximum P removal potential. The void hydraulic retention time (HRTv) was a key factor for growing hydroxyapatite crystals and had a significant effect on P removal efficiency by EAF steel slag. A temporary increase in HRTv caused by clogging resulted in an increase in EAF steel slag efficiency (from 80% to almost 100%) towards the end of investigation. Results from this study indicate that the use of EAF steel slag in constructed wetlands or filter beds is a promising solution for P removal via adsorption and precipitation mechanisms.


Subject(s)
Minerals/chemistry , Phosphorus/isolation & purification , Steel/chemistry
11.
Environ Sci Technol ; 36(21): 4642-8, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12433176

ABSTRACT

Phosphorus (P) adsorption capacities of materials derived from batch experiments can vary by several orders of magnitude depending on the method used, leading to potential misinterpretation of the P retention capacity on a long-term basis and unrealistic estimations of constructed wetland systems (CWS) longevity. The objective of this study was to determine if the P saturation of the material in a column could be used for this purpose with an improved accuracy. A 278-d column experiment with a synthetic P solution was conducted to investigate the long-term P retention capacity of electric arc furnace (EAF) steel slag up to its P saturation point. EAF slag showed a high affinity for P, reaching a saturation value of 1.35 g of P kg(-1). Investigations of the regeneration of the P adsorbing capacity by this material showed that, after 4 weeks of water desaturated resting, EAF steel slag was able to increase its initial P adsorptive capacity to 2.35 g of P kg(-1). A sequential P fractionation experiment was performed to quantify the proportion of P bound to mineral compounds in EAF. From the most loosely bound to the most strongly bound P fraction, P was associated with resin extractable (14%), Fe extractable (0.5 M Na2CO3, 47%), Al extractable (0.1 M NaOH, 1%), Ca extractable (1 M HCl, 12%), and Ca in a stable residual pool (concentrated hot HCl, 26.5%). X-ray fluorescence analyses of EAF steel slag chemical composition revealed that the continuous application of a P solution resulted in 75% and 59% increases in K2O and P2O5 respectively; Al2O3 and FeO increased by 8%, while the portion of CaO remained unchanged. The investigated properties (P retention potential, regeneration of P adsorption, P fractionation) provide useful data about the suitability of slag material as a media for long-term P removal and should enable an improved prediction of the longevity of full-scale CWS.


Subject(s)
Ecosystem , Phosphorus/chemistry , Adsorption , Environmental Monitoring , Forecasting , Plants , Refuse Disposal , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...