Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003327

ABSTRACT

An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5'-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10-12-10-6 M) with maximum potentiation of 77% at 10-10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs.


Subject(s)
Kainic Acid , Receptors, AMPA , Receptors, AMPA/chemistry , Isoxazoles/pharmacology , Ligands , Molecular Docking Simulation
2.
Org Biomol Chem ; 19(29): 6447-6454, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34236067

ABSTRACT

An efficient protocol for the straightforward functionalization of the isoxazole ring via the reactions of aromatic nucleophilic substitution of the nitro group with various nucleophiles has been elaborated. The method features excellent chemical yields, easy operability of the reaction, mild reaction conditions and a broad scope of both 5-nitroisoxazoles and nucleophiles. A synthetic approach to 3,5- and 3,4,5-substituted isoxazoles via the sequential functionalization of the isoxazole ring has been developed based on the excellent regioselectivity of the reaction of 3,5-dinitroisoxazoles with nucleophiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...