Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 17(2): e3000154, 2019 02.
Article in English | MEDLINE | ID: mdl-30794532

ABSTRACT

Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase ß (PDEß) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEß-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEß plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Signal Transduction/genetics , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Erythrocytes/parasitology , Gene Expression Regulation, Developmental , Humans , Hydrolysis , Merozoites/enzymology , Merozoites/genetics , Merozoites/growth & development , Phosphoproteins/classification , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphorylation , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Proteome/classification , Proteome/genetics , Proteome/metabolism , Protozoan Proteins/metabolism , Schizonts/enzymology , Schizonts/genetics , Schizonts/growth & development , Time Factors
2.
Open Biol ; 7(12)2017 12.
Article in English | MEDLINE | ID: mdl-29263246

ABSTRACT

The cyclic nucleotides 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) are intracellular messengers found in most animal cell types. They usually mediate an extracellular stimulus to drive a change in cell function through activation of their respective cyclic nucleotide-dependent protein kinases, PKA and PKG. The enzymatic components of the malaria parasite cyclic nucleotide signalling pathways have been identified, and the genetic and biochemical studies of these enzymes carried out to date are reviewed herein. What has become very clear is that cyclic nucleotides play vital roles in controlling every stage of the complex malaria parasite life cycle. Our understanding of the involvement of cyclic nucleotide signalling in orchestrating the complex biology of malaria parasites is still in its infancy, but the recent advances in our genetic tools and the increasing interest in signalling will deliver more rapid progress in the coming years.


Subject(s)
Cyclic AMP/metabolism , Cyclic GMP/metabolism , Plasmodium/metabolism , Signal Transduction , Cyclic Nucleotide-Regulated Protein Kinases/genetics , Cyclic Nucleotide-Regulated Protein Kinases/metabolism , Life Cycle Stages , Plasmodium/growth & development , Plasmodium/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
3.
Nat Commun ; 8: 14333, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186186

ABSTRACT

Invasion of erythrocytes by Plasmodium falciparum merozoites is necessary for malaria pathogenesis and is therefore a primary target for vaccine development. RH5 is a leading subunit vaccine candidate because anti-RH5 antibodies inhibit parasite growth and the interaction with its erythrocyte receptor basigin is essential for invasion. RH5 is secreted, complexes with other parasite proteins including CyRPA and RIPR, and contains a conserved N-terminal region (RH5Nt) of unknown function that is cleaved from the native protein. Here, we identify P113 as a merozoite surface protein that directly interacts with RH5Nt. Using recombinant proteins and a sensitive protein interaction assay, we establish the binding interdependencies of all the other known RH5 complex components and conclude that the RH5Nt-P113 interaction provides a releasable mechanism for anchoring RH5 to the merozoite surface. We exploit these findings to design a chemically synthesized peptide corresponding to RH5Nt, which could contribute to a cost-effective malaria vaccine.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , Merozoites/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Carrier Proteins/immunology , Erythrocytes/immunology , Erythrocytes/parasitology , HEK293 Cells , Humans , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Plasmodium falciparum/physiology , Protein Binding
4.
Malar J ; 15: 229, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27098483

ABSTRACT

BACKGROUND: Transmission of the malaria parasite Plasmodium falciparum from humans to the mosquito vector requires differentiation of a sub-population of asexual forms replicating within red blood cells into non-dividing male and female gametocytes. The nature of the molecular mechanism underlying this key differentiation event required for malaria transmission is not fully understood. METHODS: Whole genome sequencing was used to examine the genomic diversity of the gametocyte non-producing 3D7-derived lines F12 and A4. These lines were used in the recent detection of the PF3D7_1222600 locus (encoding PfAP2-G), which acts as a genetic master switch that triggers gametocyte development. RESULTS: The evolutionary changes from the 3D7 parental strain through its derivatives F12 (culture-passage derived cloned line) and A4 (transgenic cloned line) were identified. The genetic differences including the formation of chimeric var genes are presented. CONCLUSION: A genomics resource is provided for the further study of gametocytogenesis or other phenotypes using these parasite lines.


Subject(s)
Gametogenesis , Genome, Protozoan , Plasmodium falciparum/physiology , Polymorphism, Genetic , Plasmodium falciparum/genetics , Sequence Analysis, DNA
5.
Nature ; 507(7491): 248-52, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24572369

ABSTRACT

The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.


Subject(s)
Gene Expression Regulation/genetics , Germ Cells/growth & development , Malaria/parasitology , Parasites/physiology , Plasmodium falciparum/genetics , Sexual Development/genetics , Transcription, Genetic/genetics , Animals , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Silencing , Genes, Protozoan/genetics , Genome, Protozoan/genetics , Germ Cells/cytology , Germ Cells/metabolism , Male , Parasites/cytology , Parasites/genetics , Plasmodium falciparum/cytology , Plasmodium falciparum/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reproduction, Asexual , Sex Differentiation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...