Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675196

ABSTRACT

Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body's ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future.

2.
Pharmaceutics ; 16(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675208

ABSTRACT

Electroporation (EP) stands out as a promising non-viral plasmid delivery strategy, although achieving optimal transfection efficiency in vivo remains a challenge. A noteworthy advancement in the field of in vivo EP is the application of hyaluronidase, an enzyme with the capacity to degrade hyaluronic acid in the extracellular matrix, which thereby enhances DNA transfer efficiency by 2- to 3-fold. This paper focuses on elucidating the mechanism of hyaluronidase's impact on transfection efficiency. We demonstrate that hyaluronidase promotes a more uniform distribution of plasmid DNA (pDNA) within skeletal muscle. Additionally, our study investigates the effect of the timing of hyaluronidase pretreatment on EP efficiency by including time intervals of 0, 5, and 30 min between hyaluronidase treatment and the application of pulses. Serum levels of the pDNA-encoded transgene reveal a minimal influence of the hyaluronidase pretreatment time on the final serum protein levels following delivery in both mice and rabbit models. Leveraging bioimpedance measurements, we capture morphological changes in muscle induced by hyaluronidase treatment, which result in a varied pDNA distribution. Subsequently, these findings are employed to optimize EP electrical parameters following hyaluronidase treatment in animal models. This paper offers novel insights into the potential of hyaluronidase in enhancing the effectiveness of in vivo EP, as well as guides optimized electroporation strategies following hyaluronidase use.

3.
Cell Rep ; 40(13): 111412, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170819

ABSTRACT

Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.


Subject(s)
Cyclic AMP , Neoplasms , Humans , Cell Line , Cyclic AMP/metabolism , Hippo Signaling Pathway , Phosphorylation , Protein Serine-Threonine Kinases , Serine/metabolism
4.
Int J Mol Sci ; 20(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757079

ABSTRACT

The nuclei of cells may exhibit invaginations of the nuclear envelope under a variety of conditions. These invaginations form a branched network termed the nucleoplasmic reticulum (NR), which may be found in cells in pathological and physiological conditions. While an extensive NR is a hallmark of cellular senescence and shows associations with some cancers, very little is known about the formation of NR in physiological conditions, despite the presence of extensive nuclear invaginations in some cell types such as endometrial cells. Here we show that in these cells the NR is formed in response to reproductive hormones. We demonstrate that oestrogen and progesterone are sufficient to induce NR formation and that this process is reversible without cell division upon removal of the hormonal stimulus. Nascent lamins and phospholipids are incorporated into the invaginations suggesting that there is a dedicated machinery for its formation. The induction of NR in endometrial cells offers a new model to study NR formation and function in physiological conditions.


Subject(s)
Cell Nucleus/drug effects , Endometrium/cytology , Estrogens/pharmacology , Cell Line, Tumor , Cell Nucleus/ultrastructure , Endothelial Cells/drug effects , Endothelial Cells/ultrastructure , Female , Humans
5.
Sci Rep ; 7(1): 7454, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785031

ABSTRACT

Structure of interphase cell nuclei remains dynamic and can undergo various changes of shape and organisation, in health and disease. The double-membraned envelope that separates nuclear genetic material from the rest of the cell frequently includes deep, branching tubular invaginations that form a dynamic nucleoplasmic reticulum (NR). This study addresses mechanisms by which NR can form in interphase nuclei. We present a combination of Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) approach and light microscopy techniques to follow formation of NR by using pulse-chase experiments to examine protein and lipid delivery to nascent NR in cultured cells. Lamina protein incorporation was assessed using precursor accumulation (for lamin A) or a MAPLE3 photoconvertible tag (for lamin B1) and membrane phospholipid incorporation using stable isotope labelling with deuterated precursors followed by high resolution NanoSIMS. In all three cases, nascent molecules were selectively incorporated into newly forming NR tubules; thus strongly suggesting that NR formation is a regulated process involving a focal assembly machine, rather than simple physical perturbation of a pre-existing nuclear envelope.


Subject(s)
Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , Lamins/metabolism , Phospholipids/metabolism , Animals , Cell Nucleus/ultrastructure , Cells, Cultured , Endoplasmic Reticulum/ultrastructure , HeLa Cells , Humans , Lamin Type A/metabolism , Lamin Type B/metabolism , Mice , Microscopy , Spectrometry, Mass, Secondary Ion
6.
PLoS One ; 12(5): e0177990, 2017.
Article in English | MEDLINE | ID: mdl-28542436

ABSTRACT

The nuclear lamina can bind and sequester transcription factors (TFs), a function lost if the lamina is abnormal, with missing or mutant lamin proteins. We now show that TF sequestration is not all-or-nothing, but a dynamic physiological response to external signals. We show that the binding of the ubiquitous TF, Oct-1, to lamin B1 was reversed under conditions of cellular stress caused, inter alia, by the chemical methylating agent methylmethanesulfonate (MMS). A search for lamin B1 post-translational modifications that might mediate changes in Oct-1 binding using kinase inhibitors uncovered a role for c-Jun N-terminal kinase (JNK). Phosphoproteomic and site-directed mutagenesis analyses of lamin B1 isolated from control and MMS-treated nuclei identified T575 as a JNK site phosphorylated after stress. A new phospho-T575 specific anti-peptide antibody confirmed increased interphase cellular T575 phosphorylation after cell exposure to certain stress conditions, enabling us to conclude that lamin B1 acts as an interphase kinase target, releasing Oct-1 to execute a protective response to stress.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , Lamin Type B/metabolism , Nuclear Envelope/metabolism , Octamer Transcription Factor-1/metabolism , Stress, Physiological/physiology , Cell Cycle Proteins/biosynthesis , Cell Line, Tumor , HeLa Cells , Humans , Lamin Type A/metabolism , Methyl Methanesulfonate/pharmacology , Mutagenesis, Site-Directed , Nuclear Proteins/biosynthesis , Phosphorylation , Protein Binding , Sterol Regulatory Element Binding Protein 1/metabolism
7.
Chem Commun (Camb) ; 53(16): 2451-2454, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28177338

ABSTRACT

Nanoscale chemical mapping of newly-synthesised phospholipid molecules inside a mammalian cell is demonstrated using tip-enhanced Raman spectroscopy (TERS) for the first time using mouse pre-adipocyte cells as a model system. Newly-synthesised membrane phospholipid distribution within a pre-adipocyte cell is mapped with <20 nm spatial resolution, overcoming the diffraction limit of confocal Raman spectroscopy via plasmonic enhancement of Raman signals at a TERS tip-apex.


Subject(s)
Adipocytes/ultrastructure , Intracellular Membranes/ultrastructure , Phospholipids/metabolism , Adipocytes/chemistry , Animals , Deuterium , Intracellular Membranes/chemistry , Mice , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phospholipids/biosynthesis , Phospholipids/chemistry , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...