Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000033

ABSTRACT

Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family-SLC and SLCO) and efflux (ATP-binding cassette family-ABC, multidrug and toxic compound extrusion family-MATE) transporter system allows vectorial drug transport, efflux carriers alone achieve barrier functions. The modulation of transport functions was proved to be effective in the treatment strategies of various pathological states. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the drugs most widely applied in clinical practice, especially in the treatment of diabetes mellitus and heart failure. Sodium taurocholate co-transporting polypeptide (NTCP) serves as virus particles (HBV/HDV) carrier, and inhibition of its function is applied in the treatment of hepatitis B and hepatitis D by myrcludex B. Inherited cholestatic diseases, such as Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) can be treated by odevixibat and maralixibat, which inhibit activity of apical sodium-dependent bile salt transporter (ASBT). Probenecid can be considered to increase uric acid excretion in the urine mainly via the inhibition of urate transporter 1 (URAT1), and due to pharmacokinetic interactions involving organic anion transporters 1 and 3 (OAT1 and OAT3), it modifies renal excretion of penicillins or ciprofloxacin as well as nephrotoxicity of cidofovir. This review discusses clinically approved drugs that affect membrane/drug transporter function.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Sodium-Glucose Transporter 2/metabolism , Membrane Transport Proteins/metabolism
2.
Article in English | MEDLINE | ID: mdl-38932672

ABSTRACT

Rheumatoid arthritis (RA) is a complex autoimmune disease that leads to joint destruction. A number of immune cells that affect joint tissues are involved in the pathogenesis of this disease. This leads to the synthesis of many pro-inflammatory mediators. The transport of drugs, as well as many cytokines involved in the development of inflammation in RA patients, is mediated by membrane transporters. Membrane transporters are proteins that mediate the transfer of substrates across biological membranes. But to date there are no studies examining the expression of solute carrier (SLC) transporters in joint tissues. The aim of the study was to evaluate the expression of individual SLC family transporters in the synovial membranes (SMs) and infrapatellar fat pad (Hoffa's pad) of RA patients. The study included 20 patients with rheumatoid arthritis and 20 with osteoarthritis as the control group who were undergoing joint replacement surgery as a normal part of clinical care. In the SM and Hoffa's pad of RA patients the following 17 membrane transporters were defined at relevant expression levels for SLC transporter superfamily: SLC15A2, SLC16A3, SLC19A1, SLC2A9, SLC22A1, SLC22A3, SLC22A4, SLC22A5, SLC22A18, SLC33A1, SLC47A1, SLC51A, SLC7A5, SLC7A6, SLC01C1, SLC02B1, SLC04A1. The confirmed expression of these transporters in the SMs as well as Hoffa's pad of patients with RA and OA, and the differences in their expression between these groups, suggests the involvement of SLC transporters in both the maintenance of homeostasis under physiological conditions in the tissues of the joints, as well as in the inflammatory process in RA.


Subject(s)
Arthritis, Rheumatoid , Solute Carrier Proteins , Synovial Membrane , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/immunology , Female , Synovial Membrane/metabolism , Synovial Membrane/immunology , Middle Aged , Solute Carrier Proteins/metabolism , Male , Aged , Adipose Tissue/metabolism , Adult , Membrane Transport Proteins/metabolism , Biological Transport , Osteoarthritis/metabolism
3.
Clin Pharmacol Ther ; 115(2): 221-230, 2024 02.
Article in English | MEDLINE | ID: mdl-37739780

ABSTRACT

First pass metabolism by phase I and phase II enzymes in the intestines and liver is a major determinant of the oral bioavailability of many drugs. Several studies analyzed expressions of major drug-metabolizing enzymes (DMEs), such as CYP3A4 and UGT1A1 in the human gut and liver. However, there is still a lack of knowledge regarding other DMEs (i.e., "minor" DMEs), although several clinically relevant drugs are affected by those enzymes. Moreover, there is very limited intra-subject data on hepatic and intestinal expression levels of minor DMEs. To fill this gap of knowledge, we analyzed gene expression (quantitative real-time polymerase chain reaction) and protein abundance (targeted proteomics) of 24 clinically relevant DMEs, that is, carboxylesterases (CES), UDP-glucuronosyltransferases (UGT), and cytochrome P450 (CYP)-enzymes. We performed our analysis using jejunum and liver tissue specimens from the same 11 healthy organ donors (8 men and 3 women, aged 19-60 years). Protein amounts of all investigated DMEs, with the exception of CYP4A11, were detected in human liver samples. CES2, CYP2C18, CYP3A4, and UGT2B17 protein abundance was similar or even higher in the jejunum, and all other DMEs were found in higher amounts in the liver. Significant correlations between gene expression and protein levels were observed only for 2 of 15 jejunal, but 13 of 23 hepatic DMEs. Intestinal and hepatic protein amounts only significantly correlated for CYP3A4 and UGT1A3. Our results demonstrated a notable variability between the individuals, which was even higher in the intestines than in the liver. Our intrasubject analysis of DMEs in the jejunum and liver from healthy donors, may be useful for physiologically-based pharmacokinetic-based modeling and prediction in order to improve efficacy and safety of oral drug therapy.


Subject(s)
Cytochrome P-450 CYP3A , Imidazoles , Jejunum , Organosilicon Compounds , Male , Humans , Female , Jejunum/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Liver/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression
4.
Eur J Pharmacol ; 964: 176308, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38142850

ABSTRACT

Herein, we report the results of anticancer screening of two 2-phenylbenzo[b]furan derivatives functionalised at the 3-position with 4-hydroxy-3,5-dimethoxybenzoyl (BF2) or 3,4,5-trimethoxybenzoyl (BF3) against 60 different cancer cell lines. The results confirmed the anticancer potential of the tested compounds against different cancer cell types, especially colon cancer, brain cancer and melanoma. BF3 was defined as the most potent (also as a tubulin polymerisation inhibitor). Its anticancer activity against melanoma cell lines that originated from different stages, i.e., primary skin-derived A375 and metastatic WM9/MDA-MB-435S, was evaluated (as the clinical success of melanoma therapy strictly depends on the disease stage). Moreover, to determine the BF3 mode of action and its effect on cell proliferation, intracellular microtubule networks, cell cycle phase distribution and apoptosis were evaluated. Our study revealed that BF3 inhibited cell proliferation in a dose-dependent manner, with IC50 yielding 0.09 ± 0.01 µM, 0.11 ± 0.01 µM and 0.18 ± 0.05 µM for A375, MDA-MB435S and WM9, respectively. The strong antiproliferative activity of compound BF3 correlated well with its inhibitory effect on tubulin polymerisation. Molecular docking proved that BF3 belongs to the colchicine binding site inhibitors (CBSIs), and experimental studies revealed that it disturbs cell cycle progression leading to G2/M arrest and apoptosis.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Tubulin/metabolism , Structure-Activity Relationship , Melanoma/drug therapy , Apoptosis , Molecular Docking Simulation , Cell Line, Tumor , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Microtubules/metabolism , Cell Proliferation , Furans/pharmacology
5.
J Clin Med ; 12(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38137720

ABSTRACT

BACKGROUND: The COMT gene encodes the enzyme catechol-O-methyltransferase, which is a key modulator of dopaminergic and adrenergic neurotransmission. Hip osteoarthritis is accompanied by reduced mobility and some level of disability. In our study, we analyzed the association between some COMT gene polymorphisms and reduced mobility in patients after total hip replacement (THR). METHODS: The operative procedures were performed on 195 patients with symptomatic and radiologically advanced hip osteoarthritis. In the postoperative follow-up, we assessed hip function with the Harris Hip Score (HHS) and the degree of disability with the Oswestry Disability Index (ODI). These procedures were repeated three times at defined intervals (one week, six weeks, and six months) after the total hip replacement. Genomic DNA was extracted from peripheral blood. SNPs in the COMT genes rs4680:A>G, rs6269:A>G, rs4633:C>T, and rs4818:C>G were genotyped. RESULTS: Our findings suggest an association between COMT gene variability and the level of disability measured by the Oswestry Disability Index (ODI) in patients after total hip replacement (THR). CONCLUSIONS: A higher number of COMT G alleles (rs4818) is an independent factor in a significant reduction in disability degree at both one week and six months after total hip replacement (THR), regardless of age or gender.

7.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108370

ABSTRACT

Given the substantial correlation between early diagnosis and prolonged patient survival in HCV patients, it is vital to identify a reliable and accessible biomarker. The purpose of this research was to identify accurate miRNA biomarkers to aid in the early diagnosis of HCV and to identify key target genes for anti-hepatic fibrosis therapeutics. The expression of 188 miRNAs in 42 HCV liver patients with different functional states and 23 normal livers were determined using RT-qPCR. After screening out differentially expressed miRNA (DEmiRNAs), the target genes were predicted. To validate target genes, an HCV microarray dataset was subjected to five machine learning algorithms (Random Forest, Adaboost, Bagging, Boosting, XGBoost) and then, based on the best model, importance features were selected. After identification of hub target genes, to evaluate the potency of compounds that might hit key hub target genes, molecular docking was performed. According to our data, eight DEmiRNAs are associated with early stage and eight DEmiRNAs are linked to a deterioration in liver function and an increase in HCV severity. In the validation phase of target genes, model evaluation revealed that XGBoost (AUC = 0.978) outperformed the other machine learning algorithms. The results of the maximal clique centrality algorithm determined that CDK1 is a hub target gene, which can be hinted at by hsa-miR-335, hsa-miR-140, hsa-miR-152, and hsa-miR-195. Because viral proteins boost CDK1 activation for cell mitosis, pharmacological inhibition may have anti-HCV therapeutic promise. The strong affinity binding of paeoniflorin (-6.32 kcal/mol) and diosmin (-6.01 kcal/mol) with CDK1 was demonstrated by molecular docking, which may result in attractive anti-HCV compounds. The findings of this study may provide significant evidence, in the context of the miRNA biomarkers, for early-stage HCV diagnosis. In addition, recognized hub target genes and small molecules with high binding affinity may constitute a novel set of therapeutic targets for HCV.


Subject(s)
MicroRNAs , Humans , Molecular Docking Simulation , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers , Algorithms , Early Diagnosis
8.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982523

ABSTRACT

Drug-induced gingival overgrowth (DIGO) is one of the side effects produced by therapeutic agents, most commonly phenytoin, nifedipine and cyclosporin A. However, the precise mechanism of DIGO is not entirely understood. A literature search of the MEDLINE/PubMed databases was conducted to identify the mechanisms involved in DIGO. The available information suggests that the pathogenesis of DIGO is multifactorial, but common pathogenic sequelae of events emerge, i.e., sodium and calcium channel antagonism or disturbed intracellular handling of calcium, which finally lead to reductions in intracellular folic acid levels. Disturbed cellular functions, mainly in keratinocytes and fibroblasts, result in increased collagen and glycosaminoglycans accumulation in the extracellular matrix. Dysregulation of collagenase activity, as well as integrins and membrane receptors, are key mechanisms of reduced degradation or excessive synthesis of connective tissue components. This manuscript describes the cellular and molecular factors involved in the epithelial-mesenchymal transition and extracellular matrix remodeling triggered by agents producing DIGO.


Subject(s)
Gingiva , Gingival Overgrowth , Humans , Gingiva/metabolism , Gingival Overgrowth/chemically induced , Gingival Overgrowth/pathology , Nifedipine/pharmacology , Calcium Channel Blockers/pharmacology , Cyclosporine/adverse effects , Fibroblasts/metabolism
9.
Int J Mol Sci ; 24(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36901973

ABSTRACT

Hepatic drug metabolizing enzymes (DMEs), whose activity may be affected by liver diseases, are major determinants of drug pharmacokinetics. Hepatitis C liver samples in different functional states, i.e., the Child-Pugh class A (n = 30), B (n = 21) and C (n = 7) were analyzed for protein abundances (LC-MS/MS) and mRNA levels (qRT-PCR) of 9 CYPs and 4 UGTs enzymes. The protein levels of CYP1A1, CYP2B6, CYP2C8, CYP2C9, and CYP2D6 were not affected by the disease. In the Child-Pugh class A livers, a significant up-regulation of UGT1A1 (to 163% of the controls) was observed. The Child-Pugh class B was associated with down-regulation of the protein abundance of CYP2C19 (to 38% of the controls), CYP2E1 (to 54%), CYP3A4 (to 33%), UGT1A3 (to 69%), and UGT2B7 (to 56%). In the Child-Pugh class C livers, CYP1A2 was found to be reduced (to 52%). A significant trend in down-regulation of the protein abundance was documented for CYP1A2, CYP2C9, CYP3A4, CYP2E1, UGT2B7, and UGT2B15. The results of the study demonstrate that DMEs protein abundances in the liver are affected by hepatitis C virus infection and depend on the severity of the disease.


Subject(s)
Cytochrome P-450 CYP1A2 , Hepatitis C , Humans , Cytochrome P-450 CYP1A2/metabolism , Chromatography, Liquid , Hepacivirus/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP2C9/metabolism , Microsomes, Liver/metabolism , Tandem Mass Spectrometry , Hepatitis C/metabolism
10.
Front Bioeng Biotechnol ; 11: 1133345, 2023.
Article in English | MEDLINE | ID: mdl-36890919

ABSTRACT

Epilobium angustifolium L. is a medicinal plant well known for its anti-inflammatory, antibacterial, antioxidant, and anticancer properties related to its high polyphenols content. In the present study, we evaluated the antiproliferative properties of ethanolic extract of E. angustifolium (EAE) against normal human fibroblasts (HDF) and selected cancer cell lines, including melanoma (A375), breast (MCF7), colon (HT-29), lung (A549) and liver (HepG2). Next, bacterial cellulose (BC) membranes were applied as a matrix for the controlled delivery of the plant extract (BC-EAE) and characterized by thermogravimetry (TG), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) images. In addition, EAE loading and kinetic release were defined. Finally, the anticancer activity of BC-EAE was evaluated against the HT-29 cell line, which presented the highest sensitivity to the tested plant extract (IC50 = 61.73 ± 6.42 µM). Our study confirmed the biocompatibility of empty BC and the dose and time-dependent cytotoxicity of the released EAE. The plant extract released from BC-2.5%EAE significantly reduced cell viability to 18.16% and 6.15% of the control values and increased number apoptotic/dead cells up to 37.53% and 66.90% after 48 and 72 h of treatment, respectively. In conclusion, our study has shown that BC membranes could be used as a carrier for the delivery of higher doses of anticancer compounds released in a sustained manner in the target tissue.

11.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769175

ABSTRACT

The kidney functions not only as a metabolite elimination organ but also plays an important role in pharmacotherapy. The kidney tubule epithelia cells express membrane carriers and transporters, which play an important role in drug elimination, and can determine drug nephrotoxicity and drug-drug interactions, as well as constituting direct drug targets. The above aspects of kidney transport proteins are discussed in the review.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Organic Anion Transporters , Humans , Membrane Transport Proteins/metabolism , Kidney/metabolism , Carrier Proteins/metabolism , Drug-Related Side Effects and Adverse Reactions/metabolism , Drug Interactions , Organic Anion Transporters/metabolism
12.
MethodsX ; 10: 102021, 2023.
Article in English | MEDLINE | ID: mdl-36713306

ABSTRACT

One methodology extensively used to develop biomarkers is the precise detection of highly responsive genes that can distinguish cancer samples from healthy samples. The purpose of this study was to screen for potential hepatocellular carcinoma (HCC) biomarkers based on non-fusion integrative multi-platform meta-analysis method. The gene expression profiles of liver tissue samples from two microarray platforms were initially analyzed using a meta-analysis based on an empirical Bayesian method to robust discover differentially expressed genes in HCC and non-tumor tissues. Then, using the bioinformatics technique of weighted correlation network analysis, the highly associated prioritized Differentially Expressed Genes (DEGs) were clustered. Co-expression network and topological analysis were utilized to identify sub-clusters and confirm candidate genes. Next, a diagnostic model was developed and validated using a machine learning algorithm. To construct a prognostic model, the Cox proportional hazard regression analysis was applied and validated. We identified three genes as specific biomarkers for the diagnosis of HCC based on accuracy and feasibility. The diagnostic model's area under the curve was 0.931 with confidence interval of 0.923-0.952.•Non-fusion integrative multi-platform meta-analysis method.•Classification methods and biomarkers recognition via machine learning method.•Biomarker validation models.

13.
Postepy Dermatol Alergol ; 39(5): 934-939, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36457676

ABSTRACT

Introduction: Aetiology of psoriasis is complex with risk factors involving both environmental triggers and genetic background. Although the best characterized genetic risk factor for psoriasis is HLA-C*06 allele, a number of other variants were associated with the disease. Aim: In the current paper we have conducted a confirmation study for SNPs located in 9 gene regions in a case-control analysis of 507 psoriatic patients and 396 controls from the Polish population. Material and methods: Subsequently the impact of genetic variants on response to topical and NB-UVB therapy (reduction in the Psoriasis Area and Severity Index) was analysed. Results: Significant differences in genotype and/or allelic frequency were observed for the following SNPs: rs33980500 (TRAF3IP2), rs582757 (TNFAIP3I), rs12188300 (IL12B), rs28998802 (NOS2), and rs2233278 (TNIP1). None of the genetic factors was associated with treatment outcome. Conclusions: Although the genetic variants have an impact on the disease risk, they are unlikely to be useful in personalization of topical therapy.

14.
Pharmaceutics ; 14(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36365127

ABSTRACT

Thymoquinone has been proved to be effective against neoplasms, including skin cancer. Its high lipophilicity, however, may limit its potential use as a drug. Melanoma remains the deadliest of all skin cancers worldwide, due to its high heterogeneity, depending on the stage of the disease. Our goal was to compare the anti-cancer activity of free thymoquinone and thymoquinone-loaded liposomes on two melanoma cell lines that originated from different stages of this cancer: skin-derived A375 and metastatic WM9. We evaluated the proapoptotic effects of free thymoquinone by flow cytometry and Western blot, and its mitotoxicity by means of JC-1 assay. Additionally, we compared the cytotoxicity of free thymoquinone and thymoquinone in liposomes by WST-1 assay. Our results revealed a higher antiproliferative effect of TQ in WM9 cells, whereas its higher proapoptotic activity was observed in the A375 cell line. Moreover, the thymoquinone-loaded liposome was proved to exert stronger cytotoxic effect on both cell lines studied than free thymoquinone. Differences in the response of melanoma cells derived from different stages of the disease to thymoquinone, as well as their different responses to free and carrier-delivered thymoquinone, are essential for the development of new anti-melanoma therapies. However, further research is required to fully understand them.

15.
Biomedicines ; 10(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36289756

ABSTRACT

Acute ischaemia is mostly caused by the rupture of an unstable atherosclerotic plaque in a coronary artery, resulting in platelet accumulation and thrombus formation, which closes the lumen of the coronary vessel. Many different factors can cause atherosclerotic plaques to occlude the lumen of a coronary artery, including factors that increase vascular inflammation and blood platelet aggregation, as well as genetic factors. L-selectin is an adhesion molecule encoded by the human SELL gene, playing an important role in leukocyte adhesion to the endothelium and the development of inflammation. Guanylate cyclase 1 soluble subunit alpha 1 (GUCY1A1) is a gene that affects vasoreactivity and platelet function, thereby influencing thrombotic processes and the risk of developing thrombotic lesions in the coronary vessels. In SELL and GUCY1A1 genes, several polymorphisms have been detected, which may affect gene expression. The aim of our study was to assess the association between the SELL rs2205849 and rs2229569 and GUCY1A1 rs7692387 polymorphisms with the risk of acute coronary syndromes in the form of unstable angina pectoris, and the association between these polymorphisms and selected clinical parameters affecting the risk of developing ischemic heart disease. The study included 232 patients with unstable angina. The diagnosis of unstable angina was achieved by a typical clinical presentation and confirmation of significant coronary artery lumen stenosis (>70%) during coronary angiography. There were no statistically significant differences in GUCY1A1 rs7692387 and SELL rs2205849 and rs2229569 polymorphism distribution between the total study and the control groups. However, when only analysing patients over 55 years of age, we found a decreased frequency of the GUCY1A1 rs7692387AA genotype (AA vs. GA + GG, OR: 0.07; 95% CI: 0.01−0.78) and an increased frequency of the SELL rs2205849 CC genotype (CC vs. TC + TT p = 0.022) and SELL rs2229569 AA genotype (AA vs. GA + GG p = 0.022) in patients with unstable angina. Our results suggest that the SELL rs2205849 and rs2229569 and GUCY1A1 rs7692387 polymorphisms are not risk factors for unstable angina in the Polish population. The GUCY1A1 rs7692387 polymorphism may increase the risk of unstable angina in patients younger than 55 years, while the SELL polymorphisms rs2205849 and rs2229569 may increase the risk of unstable angina in patients older than 55 years in the Polish population.

17.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887291

ABSTRACT

Transmembrane drug transport in hepatocytes is one of the major determinants of drug pharmacokinetics. In the present study, ABC transporters (P-gp, MRP1, MRP2, MRP3, MRP4, BCRP, and BSEP) and SLC transporters (MCT1, NTCP, OAT2, OATP1B1, OATP1B3, OATP2B1, OCT1, and OCT3) were quantified for protein abundance (LC-MS/MS) and mRNA levels (qRT-PCR) in hepatitis C virus (HCV)-infected liver samples from the Child-Pugh class A (n = 30), B (n = 21), and C (n = 7) patients. Protein levels of BSEP, MRP3, MCT1, OAT2, OATP1B3, and OCT3 were not significantly affected by HCV infection. P-gp, MRP1, BCRP, and OATP1B3 protein abundances were upregulated, whereas those of MRP2, MRP4, NTCP, OATP2B1, and OCT1 were downregulated in all HCV samples. The observed changes started to be seen in the Child-Pugh class A livers, i.e., upregulation of P-gp and MRP1 and downregulation of MRP2, MRP4, BCRP, and OATP1B3. In the case of NTCP, OATP2B1, and OCT1, a decrease in the protein levels was observed in the class B livers. In the class C livers, no other changes were noted than those in the class A and B patients. The results of the study demonstrate that drug transporter protein abundances are affected by the functional state of the liver in hepatitis C patients.


Subject(s)
Hepatitis C , Organic Anion Transporters , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Chromatography, Liquid/methods , Hepacivirus/metabolism , Hepatitis C/metabolism , Humans , Liver/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Tandem Mass Spectrometry/methods
18.
Molecules ; 27(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889510

ABSTRACT

BACKGROUND: Unwanted drug-drug interactions (DDIs), as caused by the upregulation of clinically relevant drug metabolizing enzymes and transporter proteins in intestine and liver, have the potential to threaten the therapeutic efficacy and safety of drugs. The molecular mechanism of this undesired but frequently occurring scenario of polypharmacy is based on the activation of nuclear receptors such as the pregnane X receptor (PXR) or the constitutive androstane receptor (CAR) by perpetrator agents such as rifampin, phenytoin or St. John's wort. However, the expression pattern of nuclear receptors in human intestine and liver remains uncertain, which makes it difficult to predict the extent of potential DDIs. Thus, it was the aim of this study to characterize the gene expression and protein abundance of clinically relevant nuclear receptors, i.e., the aryl hydrocarbon receptor (AhR), CAR, farnesoid X receptor (FXR), glucocorticoid receptor (GR), hepatocyte nuclear factor 4 alpha (HNF4α), PXR and small heterodimer partner (SHP), in the aforementioned organs. METHODS: Gene expression analysis was performed by quantitative real-time PCR of jejunal, ileal, colonic and liver samples from eight human subjects. In parallel, a targeted proteomic method was developed and validated in order to determine the respective protein amounts of nuclear receptors in human intestinal and liver samples. The LC-MS/MS method was validated according to the current bioanalytical guidelines and met the criteria regarding linearity (0.1-50 nmol/L), within-day and between-day accuracy and precision, as well as the stability criteria. RESULTS: The developed method was successfully validated and applied to determine the abundance of nuclear receptors in human intestinal and liver samples. Gene expression and protein abundance data demonstrated marked differences in human intestine and liver. On the protein level, only AhR and HNF4α could be detected in gut and liver, which corresponds to their highest gene expression. In transfected cell lines, PXR and CAR could be quantified. CONCLUSIONS: The substantially different expression pattern of nuclear receptors in human intestinal and liver tissue may explain the different extent of unwanted DDIs in the dependence on the administration route of drugs.


Subject(s)
Proteomics , Receptors, Steroid , Chromatography, Liquid , Constitutive Androstane Receptor , Gene Expression , Hepatocytes/metabolism , Humans , Intestines , Liver/metabolism , Pharmaceutical Preparations/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Tandem Mass Spectrometry
19.
Front Pharmacol ; 13: 896706, 2022.
Article in English | MEDLINE | ID: mdl-35846995

ABSTRACT

Epilobium angustifolium L. is an ethnomedicinal plant known as a medicinal plant in many regions of the world, among others, in various skin diseases. Despite the great interest in this plant, there are still few reports of biological activity of ready-made dermatological or cosmetical preparations containing the E. angustifolium extracts. The antioxidant, anti-ageing, anti-inflammatory, antibacterial properties and toxicity, wound healing, and skin permeation of topical hydrogels containing E. angustifolium extracts (HEas) was assessed. First, the plant extracts were prepared using three solvents: 70% (v/v) ethanol, 70% (v/v) isopropanol and water, next by preparing hydrogels witch by dry extracts (HEa-EtOH), (HEa-iPrOH) and (HEa-WA), respectively. Finally, the content of selected phenolic acids in the HEas was evaluated by high-performance liquid chromatography (HPLC). All the HEas were characterized by high antioxidant activity. The most increased antibacterial activity was observed for a strain of Streptococcus pneumoniae ATCC 49619, Escherichia coli, Enterococcus faecalis ATCC 29212, Enterococcus faecium, Sarcina lutea ATCC 9341 and Bacillus pseudomycoides, while the strains of Streptococcus epidermidis, Bacillus subtilis, and Staphylococcus aureus were the least sensitive. All the HEas showed a reduction in the activity of lipoxygenase enzymes, proteases, and inhibition of protein denaturation. The HEa-EtOH and HEa-iPrOH also enhanced the wound healing activity of HDF cells. Additionally, in vitro penetration studies were performed using the Franz diffusion cells. These studies showed that the active ingredients contained in E. angustifolium penetrate through human skin and accumulate in it. Furthermore, the hydrogels containing E. angustifolium extracts showed a broad spectrum of activity. Therefore, they can be considered as an interesting alternative for dermatologic and cosmetic preparations.

20.
J Clin Med ; 11(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35456310

ABSTRACT

Seminal vesicles play an important role in the male reproductive system, producing seminal fluid and thus adequate environment for sperm. However, mechanisms underlying secretory functions of the seminal vesicles' epithelium have not been defined yet. The aim of the present study was to characterize expression and immunolocalization of selected membrane transporters and carriers in the seminal vesicles. The study included biopsy specimens collected from non-affected parts of seminal vesicles from 53 patients of Caucasian origin subjected for prostatectomy. RT-PCR was used to define expression of 15 genes coding for ABC-family and 37 genes encoding 37 SLC-family transporters/carriers. Immunohistochemistry was used to define localization of 6 transporters. In the seminal vesicles, the following membrane transporters and carriers were defined: ABCA1, ABCB1, ABCB5, ABCB6, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC6, ABCG2, SLC01C1, SLC02B1, SLC04A1, SLC04C1, SLC10A1, SLC15A1, SLC15A2, SLC16A1, SLC16A3, SLC19A1, SLC22A1, SLC22A3, SLC22A11, SLC22A18, SLC22A4, SLC22A5, SLC28A1, SLC2A9, SLC33A1, SLC47A1, SLC47A2, SLC51A, SLC51B, SLC7A5, SLC7A6. Age-dependent expression was evidenced for ABCB1, ABCG2, SLC04C1, SLC15A1, SLC16A1, SLC22A11, SLC22A18, SLC47A1 and SLC47A2. ABCG2, P-gp, MRP1, MRP3, MCT1 and LAT1 were localized in the apical membrane and P-gp in the basolateral membrane of the seminal vesicle epithelium. The expression of the membrane transporters and carriers in the seminal vesicle epithelium confirms its secretory and barrier functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...