Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 5(7): eaav5168, 2019 07.
Article in English | MEDLINE | ID: mdl-31392267

ABSTRACT

Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. In this study, we reveal a new mechanism of soil biogeochemical control of large-scale vegetation water use. Nitrate and sulfate deposition from fossil fuel burning have caused substantial soil acidification, leading to the leaching of soil base cations. Of these, calcium has a unique role in plant cells by regulating stomatal aperture, thus affecting vegetation water use. We hypothesized that the leaching of the soil calcium supply, induced by acid deposition, would increase large-scale vegetation water use. We present evidence from a long-term whole watershed acidification experiment demonstrating that the alteration of the soil calcium supply by acid deposition can significantly intensify vegetation water use (~10% increase in evapotranspiration) and deplete available soil water. These results are critical to understanding future water availability, biogeochemical cycles, and surface energy flux and to help reduce uncertainties in terrestrial biosphere models.


Subject(s)
Calcium/metabolism , Ecosystem , Soil/chemistry , Water/metabolism , Acids/chemistry , Fossil Fuels/adverse effects , Nitrates/metabolism , Nitrogen/metabolism
2.
Oecologia ; 189(2): 515-528, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30515662

ABSTRACT

Modeling and forecasting forests as carbon sinks require that we understand the primary factors affecting productivity. One factor thought to be positively related to stand productivity is the degree of asymmetry, or the slope of the relationship between tree size and biomass growth. Steeper slopes indicate disproportionate productivity of big trees relative to small trees. Theoretically, big trees outcompete smaller trees during favorable growth conditions because they maintain better access to light. For this reason, high productivity forests are expected to have asymmetric growth. However, empirical studies do not consistently support this expectation, and those that do are limited in spatial or temporal scope. Here, we analyze size-growth relationships from 1970 to 2011 across a diverse network of forest sites in the eastern United States (n = 16) to test whether asymmetry is consistently related to productivity. To investigate this relationship, we analyze asymmetry-productivity relationships between our 16 forests at non-overlapping annual, 2-, 5-, 10-, and 20-year sampling intervals and find that asymmetry is negatively related to productivity, but the strength depends on the specific interval considered. Within-site temporal variability in asymmetry and productivity are generally positively correlated over time, except at the 5-year remeasurement interval. Rather than confirming or failing to support a positive relationship between asymmetry and productivity, our findings suggest caution interpreting these metrics since the relationship varies across forest types and temporal scales.


Subject(s)
Forests , Trees , Biomass
3.
Conserv Biol ; 32(5): 1150-1161, 2018 10.
Article in English | MEDLINE | ID: mdl-29781169

ABSTRACT

Landscape-scale alterations that accompany urbanization may negatively affect the population structure of wildlife species such as freshwater turtles. Changes to nesting sites and higher mortality rates due to vehicular collisions and increased predator populations may particularly affect immature turtles and mature female turtles. We hypothesized that the proportions of adult female and immature turtles in a population will negatively correlate with landscape urbanization. As a collaborative effort of the Ecological Research as Education Network (EREN), we sampled freshwater turtle populations in 11 states across the central and eastern United States. Contrary to expectations, we found a significant positive relationship between proportions of mature female painted turtles (Chrysemys picta) and urbanization. We did not detect a relationship between urbanization and proportions of immature turtles. Urbanization may alter the thermal environment of nesting sites such that more females are produced as urbanization increases. Our approach of creating a collaborative network of scientists and students at undergraduate institutions proved valuable in terms of testing our hypothesis over a large spatial scale while also allowing students to gain hands-on experience in conservation science.


Subject(s)
Turtles , Animals , Conservation of Natural Resources , Female , Fresh Water , United States , Urbanization
4.
Glob Chang Biol ; 24(6): 2339-2351, 2018 06.
Article in English | MEDLINE | ID: mdl-29460369

ABSTRACT

Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.


Subject(s)
Climate Change , Droughts , Forests , Environmental Monitoring , North America , Seasons , Soil , Temperature , Trees/growth & development , Water
5.
J Environ Manage ; 88(4): 1452-70, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18022757

ABSTRACT

Habitat valuation methods were implemented to support remedial decisions for aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, TN, USA. The habitat valuation was undertaken for six contaminated sites: Contractor's Spoil Area, K-901-N Disposal Area, K-770 Scrapyard, K-1007-P1 pond, K-901 pond, and the Mitchell Branch stream. Four of these sites are within the industrial use area of ETTP and two are in the Black Oak Ridge Conservation Easement. These sites represent terrestrial and aquatic habitat for vertebrates, terrestrial habitat for plants, and aquatic habitat for benthic invertebrates. Current and potential future, no-action (no remediation) scenarios were evaluated primarily using existing information. Valuation metrics and scoring criteria were developed in a companion paper, this volume. The habitat valuation consists of extensive narratives, as well as scores for aspects of site use value, site rarity, and use value added from spatial context. Metrics for habitat value were expressed with respect to different spatial scales, depending on data availability. There was significant variation in habitat value among the six sites, among measures for different taxa at a single site, between measures of use and rarity at a single site, and among measures for particular taxa at a single site with respect to different spatial scales. Most sites had aspects of low, medium, and high habitat value. Few high scores for current use value were given. These include: wetland plant communities at all aquatic sites, Lepomid sunfish and waterbirds at 1007-P1 pond, and Lepomid sunfish and amphibians at K-901 pond. Aquatic sites create a high-value ecological corridor for waterbirds, and the Contractor's Spoil Area and possibly the K-901-N Disposal Site have areas that are part of a strong terrestrial ecological corridor. The only example of recent observations of rare species at these sites is the gray bat observed at the K-1007-P1 pond. Some aspects of habitat value are expected to improve under no-action scenarios at a few of the sites. Methods are applicable to other contaminated sites where sufficient ecological data are available for the site and region.


Subject(s)
Ecosystem , Environmental Pollutants , Environmental Restoration and Remediation/methods , United States
6.
J Environ Manage ; 88(4): 1436-51, 2008 Sep.
Article in English | MEDLINE | ID: mdl-17897773

ABSTRACT

Habitat valuation methods are most often developed and used to prioritize candidate lands for conservation. In this study the intent of habitat valuation was to inform the decision-making process for remediation of chemical contaminants on specific lands or surface water bodies. Methods were developed to summarize dimensions of habitat value for six representative aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy Oak Ridge Reservation in Oak Ridge, TN, USA. Several general valuation metrics were developed for three broad categories: site use by groups of organisms, site rarity, and use value added from spatial context. Examples of use value metrics are taxa richness, a direct measure of number of species that inhabit an area, complexity of habitat structure, an indirect measure of potential number of species that may use the area, and land use designation, a measure of the length of time that the area will be available for use. Measures of rarity included presence of rare species or communities. Examples of metrics for habitat use value added from spatial context included similarity or complementarity of neighboring habitat patches and presence of habitat corridors. More specific metrics were developed for groups of organisms in contaminated streams, ponds, and terrestrial ecosystems. For each of these metrics, cutoff values for high, medium, and low habitat value were suggested, based on available information on distributions of organisms and landscape features, as well as habitat use information. A companion paper describes the implementation of these habitat valuation metrics and scoring criteria in the remedial investigation for ETTP.


Subject(s)
Ecosystem , Environmental Pollutants , Environmental Restoration and Remediation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...