Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 247-258, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38512070

ABSTRACT

Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology.


Subject(s)
Electron Microscope Tomography , Image Processing, Computer-Assisted , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Data Accuracy , Workflow
2.
Nature ; 624(7990): 201-206, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37794193

ABSTRACT

Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Subject(s)
Betacoronavirus , Polysaccharides , Sialic Acids , Spike Glycoprotein, Coronavirus , Humans , Allosteric Regulation , Betacoronavirus/chemistry , Betacoronavirus/ultrastructure , Common Cold/virology , Cryoelectron Microscopy , Molecular Dynamics Simulation , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Sialic Acids/chemistry , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , Immune Evasion
3.
Proc Natl Acad Sci U S A ; 120(26): e2303292120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339194

ABSTRACT

The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used messenger RNA (mRNA) display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Wuhan strain infection and pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor-binding domain, N-terminal domain, and S2 region, distal to the angiotensin-converting enzyme 2 receptor-interaction site. Our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that peptides and potentially other drug-like molecules can target.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Pandemics/prevention & control , Peptides/pharmacology
4.
Sci Rep ; 13(1): 1420, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36697499

ABSTRACT

Membrane proteins are the largest group of therapeutic targets in a variety of disease areas and yet, they remain particularly difficult to investigate. We have developed a novel one-step approach for the incorporation of membrane proteins directly from cells into lipid Salipro nanoparticles. Here, with the pannexin1 channel as a case study, we demonstrate the applicability of this method for structure-function analysis using SPR and cryo-EM.


Subject(s)
Membrane Proteins , Membrane Proteins/metabolism , Cryoelectron Microscopy/methods , Cell Membrane/metabolism
5.
Nat Biotechnol ; 40(12): 1845-1854, 2022 12.
Article in English | MEDLINE | ID: mdl-35864170

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Designed Ankyrin Repeat Proteins , Cryoelectron Microscopy , Antibodies, Monoclonal/therapeutic use , Combined Antibody Therapeutics , Antibodies, Neutralizing
6.
Sci Immunol ; 7(73): eabp9312, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35471062

ABSTRACT

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antibodies, Neutralizing/pharmacology , Cryoelectron Microscopy , Humans , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
7.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-33958322

ABSTRACT

The emergence of SARS-CoV-2 antibody escape mutations highlights the urgent need for broadly neutralizing therapeutics. We previously identified a human monoclonal antibody, 47D11, capable of cross-neutralizing SARS-CoV-2 and SARS-CoV and protecting against the associated respiratory disease in an animal model. Here, we report cryo-EM structures of both trimeric spike ectodomains in complex with the 47D11 Fab. 47D11 binds to the closed receptor-binding domain, distal to the ACE2 binding site. The CDRL3 stabilizes the N343 glycan in an upright conformation, exposing a mutationally constrained hydrophobic pocket, into which the CDRH3 loop inserts two aromatic residues. 47D11 stabilizes a partially open conformation of the SARS-CoV-2 spike, suggesting that it could be used effectively in combination with other antibodies targeting the exposed receptor-binding motif. Together, these results reveal a cross-protective epitope on the SARS-CoV-2 spike and provide a structural roadmap for the development of 47D11 as a prophylactic or postexposure therapy for COVID-19.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Humans , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Structure-Activity Relationship
8.
Structure ; 29(9): 963-974.e6, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33957078

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest class of cell surface drug targets. Advances in stabilization of GPCR:transducer complexes, together with improvements in cryoelectron microscopy (cryo-EM) have recently been applied to structure-assisted drug design for GPCR agonists. Nonetheless, limitations in the commercial application of these approaches, including the use of nanobody 35 (Nb35) to aid complex stabilization and the high cost of 300 kV imaging, have restricted broad application of cryo-EM in drug discovery. Here, using the PF 06882961-bound GLP-1R as exemplar, we validated the formation of stable complexes with a modified Gs protein in the absence of Nb35. In parallel, we compare 200 versus 300 kV image acquisition using a Falcon 4 or K3 direct electron detector. Moreover, the 200 kV Glacios-Falcon 4 yielded a 3.2 Å map with clear density for bound drug and multiple structurally ordered waters. Our work paves the way for broader commercial application of cryo-EM for GPCR drug discovery.


Subject(s)
Cryoelectron Microscopy/methods , Drug Discovery/methods , Receptors, G-Protein-Coupled/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Protein Binding , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Sf9 Cells , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spodoptera
9.
Nat Commun ; 11(1): 4646, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938911

ABSTRACT

The human betacoronaviruses HKU1 and OC43 (subgenus Embecovirus) arose from separate zoonotic introductions, OC43 relatively recently and HKU1 apparently much longer ago. Embecovirus particles contain two surface projections called spike (S) and haemagglutinin-esterase (HE), with S mediating receptor binding and membrane fusion, and HE acting as a receptor-destroying enzyme. Together, they promote dynamic virion attachment to glycan-based receptors, specifically 9-O-acetylated sialic acid. Here we present the cryo-EM structure of the ~80 kDa, heavily glycosylated HKU1 HE at 3.4 Å resolution. Comparison with existing HE structures reveals a drastically truncated lectin domain, incompatible with sialic acid binding, but with the structure and function of the esterase domain left intact. Cryo-EM and mass spectrometry analysis reveals a putative glycan shield on the now redundant lectin domain. The findings further our insight into the evolution and host adaptation of human embecoviruses, and demonstrate the utility of cryo-EM for studying small, heavily glycosylated proteins.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/physiology , Coronavirus Infections/virology , Hemagglutinins, Viral/chemistry , Viral Fusion Proteins/chemistry , Betacoronavirus/classification , Binding Sites , Catalytic Domain , Cryoelectron Microscopy , Glycosylation , HEK293 Cells , Hemagglutinins, Viral/metabolism , Hemagglutinins, Viral/ultrastructure , Humans , Lectins/chemistry , Lectins/metabolism , Mass Spectrometry , Models, Molecular , N-Acetylneuraminic Acid/metabolism , Polysaccharides/chemistry , Protein Domains , Viral Fusion Proteins/metabolism , Viral Fusion Proteins/ultrastructure
10.
IUCrJ ; 6(Pt 6): 1120-1133, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31709067

ABSTRACT

Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of 'tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels-Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99-107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Šresolution. IdmH is a homodimer, with the individual protomers consisting of an α+ß barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels-Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels-Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.

11.
Acta Crystallogr D Struct Biol ; 74(Pt 6): 560-571, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29872006

ABSTRACT

Cryo-electron microscopy (cryo-EM) can now be used to determine high-resolution structural information on a diverse range of biological specimens. Recent advances have been driven primarily by developments in microscopes and detectors, and through advances in image-processing software. However, for many single-particle cryo-EM projects, major bottlenecks currently remain at the sample-preparation stage; obtaining cryo-EM grids of sufficient quality for high-resolution single-particle analysis can require the careful optimization of many variables. Common hurdles to overcome include problems associated with the sample itself (buffer components, labile complexes), sample distribution (obtaining the correct concentration, affinity for the support film), preferred orientation, and poor reproducibility of the grid-making process within and between batches. This review outlines a number of methodologies used within the electron-microscopy community to address these challenges, providing a range of approaches which may aid in obtaining optimal grids for high-resolution data collection.


Subject(s)
Cryoelectron Microscopy/methods , Specimen Handling/methods , Macromolecular Substances/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...