Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(8): 12693-12702, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157425

ABSTRACT

We characterize the intensity noise of two mid-infrared (MIR) ultrafast tunable (3.5-11 µm) sources based on difference frequency generation (DFG). While both sources are pumped by a high repetition rate Yb-doped amplifier delivering 200 µJ 300 fs at a central wavelength of 1030 nm, the first is based on intrapulse DFG (intraDFG), and the second on DFG at the output of an optical parametric amplifier (OPA). The noise properties are assessed through measurement of the relative intensity noise (RIN) power spectral density and pulse-to-pulse stability. The noise transfer mechanisms from the pump to the MIR beam is empirically demonstrated. As an example, improving the pump laser noise performance allows reduction of the integrated RIN (IRIN) of one of the MIR source from 2.7% RMS down to 0.4% RMS. The intensity noise is also measured at various stages and in several wavelength ranges in both laser system architectures, allowing us to identify the physical origin of their variation. This study presents numerical values for the pulse to pulse stability, and analyze the frequency content of the RINs of particular importance for the design of low-noise high repetition rate tunable MIR sources and future high performance time-resolved molecular spectroscopy experiments.

2.
Opt Lett ; 47(19): 4885-4888, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181142

ABSTRACT

We demonstrate an ultrafast mid-infrared source architecture that implements both intrapulse difference frequency generation (iDFG) and further optical parametric amplification (OPA), in an all-inline configuration. The source is driven by a nonlinearly compressed high-energy Yb-doped-fiber amplifier delivering 7.4 fs pulses at a central wavelength of 1030 nm, at a repetition rate of 250 kHz. It delivers 1 µJ, 73 fs pulses at a central wavelength of 8 µm, tunable over more than one octave. By enrolling all the pump photons in the iDFG process and recycling the long wavelength pump photons amplified in the iDFG in the subsequent OPA, we obtain an unprecedented overall optical efficiency of 2%. These performances, combining high energy and repetition rate in a very simple all-inline setup, make this technique ideally suited for a growing number of applications, such as high harmonic generation in solids or two-dimensional infrared spectroscopy experiments.

3.
Opt Lett ; 47(2): 261-264, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030582

ABSTRACT

We present a technique to optimize the intrapulse difference frequency generation efficiency for mid-infrared generation. The approach employs a multi-order wave plate that is designed to selectively rotate the polarization state of the incoming spectral components on the relevant orthogonal axes for subsequent nonlinear interaction. We demonstrate a significant increase of the mid-infrared average power generated, of a factor ≥2.5 compared with the conventional scheme, owing to an optimally distributed number of photons enrolled in the difference frequency generation process.

4.
Opt Express ; 27(8): 11830-11843, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31053023

ABSTRACT

Luminescent concentrators (LC) enable breaking the limit of geometrical concentration imposed by the brightness theorem. They enable increasing the brightness of Lambertian light sources such as (organic) light-emitting diodes. However, for illumination applications, light emitted in the high-index material needs to be outcoupled to free space, raising important light extraction issues. Supported by an intuitive graphical representation, we propose a simple design for light extraction: a wedged output side facet, breaking the symmetry of the traditional rectangular slab design. Angular emission patterns as well as ray-tracing simulations are reported on Ce:YAG single crystal concentrators cut with different wedge angles, and are compared with devices having flat or roughened exit facets. The wedge output provides a simple and versatile way to simultaneously enhance the extracted power (up to a factor of 2) and the light directivity (radiant intensity increased by up to 2.2.).

5.
Opt Lett ; 42(18): 3530-3533, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28914893

ABSTRACT

Applications using multi-PW lasers necessitate high temporal pulse quality with a tremendous contrast ratio (CR). The first crucial prerequisite to achieve multi-PW peak power is the generation of ultrashort pulses with good spectral phase quality. Second, to avoid any deleterious pre-ionization effect on targets, nanosecond contrast better than 1012 is also targeted. In the framework of the Apollon 10 PW French laser program, we present a high-contrast 10 fs front-end design study to inject highly energetic Ti:sapphire PW lasers. The CR has been measured and analyzed in different time ranges highlighting the different major contributions for each scale.

6.
Opt Lett ; 39(20): 6001-4, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25361140

ABSTRACT

In this study, we report on a pure Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a diffraction-limited fiber laser. At the repetition rate of 96 MHz, several configurations have been studied to achieve either pulse duration of 40 fs with average powers up to the watt level or shorter pulse duration down to 32 fs. To the best of our knowledge, this represents the shortest pulse duration ever achieved with an Yb-doped bulk material and the highest average power for sub-40-fs Kerr-lens mode-locked Yb-bulk oscillator.

7.
Opt Lett ; 38(20): 4008-10, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321907

ABSTRACT

By using a high-brightness fiber pump laser, we demonstrate a pure Kerr-lens mode-locked (ML) Yb:CaF(2) oscillator. The laser delivers 68 fs pulses with 2.3 W average power at 73 MHz repetition rate and an optical-to-optical efficiency of 33% is achieved. To the best of our knowledge, this is the first demonstration of Kerr-lens mode-locking in Yb:CaF(2). Incidentally, we report here the highest average power ever achieved for a sub-100-fs active Kerr-lens ML Yb-bulk oscillator.

8.
Opt Lett ; 37(19): 3984-6, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23027253

ABSTRACT

A mode-locked thin-disk laser based on Yb:CALGO is demonstrated for the first time. At an average output power of 28 W we obtained pulses with a duration of 300 fs and a pulse energy of 1.3 µJ. 197 fs pulses with 0.9 µJ of energy were achieved at an average output power of 20 W. The shortest pulse duration measured in our experiments was 135 fs with a spectrum centered at 1043 nm. The experiments also revealed a very broad tunability from 1032 to 1046 nm with sub-200 fs pulses.

9.
Opt Express ; 20(19): 21627-34, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037281

ABSTRACT

We report on the passive coherent combining of up to 8 temporally and spatially separated ultrashort pulses amplified in a stretcher-free ytterbium-doped fiber system. An initial femtosecond pulse is split into 4 temporal replicas using divided-pulse amplification, and subsequently divided in two counter-propagating beams in a Sagnac interferometer containing a fiber amplifier. The spatio-temporal distribution of the peak-power inside the amplifier allows the generation of record 3.1 µJ and 50 fs pulses at 1 MHz of repetition rate with 52 MW of peak-power from a stretcher-free fiber amplifier and without additional nonlinear post-compression stages.

10.
Opt Lett ; 37(9): 1460-2, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22555704

ABSTRACT

Using passive coherent beam combining of two ultrafast fiber amplifiers, we demonstrate the generation of high temporal quality 300 fs and 650 µJ pulses corresponding to 60 W of average power at a repetition rate of 92 kHz. Furthermore, at 2 MHz of repetition rate record coherent combining average powers of 135 W before and 105 W after compression are measured. A combining efficiency higher than 90% is maintained over the whole range of output powers and repetition rates investigated demonstrating the efficiency and robustness of the passive combining technique. The measured pulse-to-pulse relative power fluctuation at high energy is 2%, indicating that the system is essentially immune to environmental phase noise. We believe the passive combining method to be an attractive approach for compact multi-GW peak power femtosecond fiber-based sources.

11.
Opt Lett ; 37(4): 650-2, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22344136

ABSTRACT

We experimentally investigate the impact of spectral phase mismatch on the coherent beam combining of two femtosecond fiber chirped-pulse amplifiers. By measuring the differential spectral phase, both linear and nonlinear contributions are identified. An accumulated nonlinear phase as high as 6 rad has been measured, for which a combination efficiency of 91% can be obtained by symmetrizing the pump and injection powers. This also allows us to quantitatively separate the spatial and temporal contributions of the nonperfect combining efficiency.

12.
Opt Lett ; 36(21): 4134-6, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22048342

ABSTRACT

We present the first demonstration of a Yb:CALGO thin-disk laser. In a slightly multimode configuration, we obtained up to 30 W of average power at a slope efficiency of 40% and an optical-to-optical efficiency of 32%. With a single-mode cavity, an average power of 25 W was achieved. A tuning range from 1018 to 1052 nm could be demonstrated by inserting a prism into the cavity. In the Q-switched regime, we obtained 1 mJ of pulse energy at a repetition rate of 100 Hz.

13.
Opt Lett ; 36(9): 1602-4, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21540941

ABSTRACT

High-power diode-pumped laser operation at 992-993 nm under a pumping wavelength of 981 of 986 nm is demonstrated with Yb:CaF2 operating at cryogenic temperature (77 K), leading to extremely low quantum defects of 1.2% and 0.7%, respectively. An average output power of 33 W has been produced with an optical efficiency of 35%. This represents, to the best of our knowledge, the best laser performance ever obtained at such low quantum defects on intense laser lines.

14.
Opt Lett ; 36(5): 621-3, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21368927

ABSTRACT

We demonstrate coherent beam combining of two femtosecond fiber chirped-pulse amplifiers seeded by a common oscillator. Using a feedback loop based on an electro-optic phase modulator, an average power of 7.2 W before compression is obtained with a combining efficiency of 90%. The spatial and temporal qualities of the oscillator are retained, with a recombined pulse width of 325 fs. This experiment opens up a way to scale the peak/average power of ultrafast fiber sources.

15.
Opt Express ; 19(1): 93-8, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21263545

ABSTRACT

The generation of high contrast and ultrashort laser pulses via a compact and energy-scalable cross polarized wave filter is presented. The setup incorporates a waveguide spatial filter into a single crystal XPW configuration, enabling high energy and high intensity transmission, efficient contrast enhancement and pulse shortening at the multi-mJ level. Excellent XPW conversion of up to 33% (global efficiency: 20%, intensity transmission: 40%) led to an output energy of 650 µJ for an input of 3.3 mJ. Additionally, efficient conversion under specific input phase conditions, allowed pulse shortening from 25 fs to 9.6 fs, indicating the prospective application of this setup as a high energy, ultrabroad laser source.

16.
Opt Lett ; 35(22): 3757-9, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21081987

ABSTRACT

We present a high-power diode-pumped Yb:CaF(2) laser operating at cryogenic temperature (77 K). A laser output power of 97 W at 1034 nm was extracted for a pump power of 245 W. The corresponding global extraction efficiency (versus absorbed pump power) is 65%. The laser small signal gain was found to be equal to 3.1. The laser wavelength could be tuned between 990 and 1052 nm with peaks that correspond well to the structure of the gain cross-section spectra registered at low temperature.

17.
Opt Lett ; 34(15): 2354-6, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19649095

ABSTRACT

Femtosecond mode-locked operation is demonstrated for the first time, to our knowledge, with a Yb:SrF(2) crystal. The shortest pulse duration is 143 fs for an average power of 450 mW. The highest average power is 620 mW for a pulse duration of 173 fs. Since Yb:SrF(2) corresponds to the longest-lifetime Yb-doped crystal with which the mode-locking operation has been achieved, a detailed analysis is carried out to characterize the quality of the solitonlike regime.

18.
Opt Express ; 17(15): 13000-8, 2009 Jul 20.
Article in English | MEDLINE | ID: mdl-19654704

ABSTRACT

Amplitude and phase control of the output beam of a multimode LMA fiber supporting 4 modes is demonstrated by digital holography in both continuous and ns pulsed regimes at 1064 nm. Our system allows dynamic compensation of beam pointing instabilities, external perturbations introducing low order aberrations and fluctuations of the relative phase of the modes supported by the fiber.

19.
Opt Lett ; 34(9): 1474-6, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19412310

ABSTRACT

We demonstrate the generation of 99 fs pulses by a mode-locked laser oscillator built around a Yb:CaF(2) crystal. An average power of 380 mW for a 13 nm bandwidth spectrum centered at 1053 nm is obtained. The short-pulse operation is achieved thanks to a saturable absorber mirror and is stabilized by the Kerr lens effect. We investigated the limits of the stabilization process and observed a regime slowly oscillating between mode locking and Q switching.

20.
Opt Lett ; 34(2): 196-8, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19148253

ABSTRACT

We report on an extended-cavity mode-locked laser based on an Yb:CALGO crystal operating either at 27 MHz and 93 fs pulse duration or at 15 MHz and 170 fs duration single-pulse regime. To the best of our knowledge this is the first demonstration of an extended-cavity oscillator based on Yb-doped crystal producing sub-100 fs pulses. The pulse energy was 24 nJ directly at the output of the oscillator (and 17 nJ after compression). Based on a similar design, we also demonstrate an unprecedented double-pulse dual-wavelength femtosecond regime. An explanation of this atypical regime is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...