Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 11(3): 231783, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455994

ABSTRACT

Biologging and habitat modelling are key tools supporting the development of conservation measures and mitigating the effects of anthropogenic pressures on marine species. Here, we analysed satellite telemetry data and foraging habitat preferences in relation to chlorophyll-a productivity fronts to understand the movements and behaviour of endangered Mediterranean fin whales (Balaenoptera physalus) during their spring-summer feeding aggregation in the North-Western Mediterranean Sea. Eleven individuals were equipped with Argos satellite transmitters across 3 years, with transmissions averaging 23.5 ± 11.3 days. Hidden Markov Models were used to identify foraging behaviour, revealing how individuals showed consistency in their use of seasonal core feeding grounds; this was supported by the distribution of potential foraging habitat. Importantly, tracked whales spent most of their time in areas with no explicit protected status within the study region. This highlights the need for enhanced time- and place-based conservation actions to mitigate the effects of anthropogenic impacts for this species, notably ship strike risk and noise disturbance in an area of exceptionally high maritime traffic levels. These findings strengthen the need to further assess critical habitats and Important Marine Mammal Areas that are crucial for focused conservation, management and mitigation efforts.

2.
Mar Environ Res ; 183: 105808, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403409

ABSTRACT

Marine ecosystems have been significantly altered by the cumulative impacts of human activities. Pelagic sharks have become vulnerable to increases in mortality rates caused by fishing. The decrease in number of these top predators could have substantial cascading effects on wider marine communities. Concerns about these potential impacts, and the critical need for effective management, have led to an increased interest in assessing the trophic ecology of sharks. While stable isotope analyses have been used to provide relevant insights about the trophic ecology of sharks, the causal factors leading to trophic variation between individuals has been largely overlooked. Here, we investigated the relative effect of biological factors, geographic location, and environmental factors on the spatial trophodynamics of the blue shark (Prionace glauca). Specifically, stable isotope values of δ15N and δ13C, and the estimated trophic position (TP) were analysed for 180 blue sharks collected from south of the Canary Islands in the Atlantic Ocean, to the north-western Mediterranean Sea. The results showed that models which included combined variables explained the variation in δ15N, TP and δ13C values better than models which considered only stand-alone predictors. The independent contributions of environmental variables and biological factors seemed to be more important than geographic location for δ15N and TP. δ15N and TP increased in a curvilinear fashion with body size, and TP was higher for females. In the case of δ13C values, only an effect from sex was observed. Among environmental variables, chlorophyll-a, pelagic productivity, and sea-surface temperature proved to be reliable predictors, particularly for δ15N and TP, most likely due to their relationship with productivity and prey availability. This study provides new information on ranking the factors that influence the trophodynamics of the blue shark, namely the environment, the geographic location, and the biological factors of the species.


Subject(s)
Ecosystem , Sharks , Humans , Animals , Female , Ecology , Isotopes , Atlantic Ocean
3.
Sci Rep ; 9(1): 4732, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30894610

ABSTRACT

This study investigates the association between an index of mesozooplankton biomass, derived from the Continuous Plankton Recorder survey and satellite-derived productivity fronts in the North Atlantic. While chlorophyll-a content (CHL) is commonly described as a proxy for phytoplankton biomass, the size of productivity fronts estimated from the horizontal gradient of CHL appears to be directly linked to mesozooplankton biomass. Our results suggest that the lifespan of productivity fronts, which ranges from weeks to months, meets the time requirement of mesozooplankton to develop. The proposed indicator describes the daily distribution of mesozooplankton's suitable feeding habitat. It also provides a coherent interpretation of the productivity front development with respect to phytoplankton activity (CHL values) and potential predation by higher trophic levels. Since mesozooplankton are essential for feeding at higher trophic levels, this satellite-derived indicator delivers essential information for research and policy. An unanticipated positive trend of the indicator from 2003 to 2017 is observed at a basin scale under the current effects of climate change, with regional peaks in relatively poorly productive areas. Such monitoring indicator is potentially important to advances in marine food web modelling, fisheries science and the dynamic management of oceans towards sustainability.


Subject(s)
Biomass , Environmental Monitoring/methods , Food Chain , Zooplankton/growth & development , Animals , Chlorophyll/analogs & derivatives , Chlorophyll/analysis , Climate Change , Global Warming , Oceans and Seas , Spacecraft
4.
Ambio ; 48(2): 111-122, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29845576

ABSTRACT

To ensure food security and nutritional quality for a growing world population in the face of climate change, stagnant capture fisheries production, increasing aquaculture production and competition for natural resources, countries must be accountable for what they consume rather than what they produce. To investigate the sustainability of seafood consumption, we propose a methodology to examine the impact of seafood supply chains across national boundaries: the seafood consumption footprint. The seafood consumption footprint is expressed as the biomass of domestic and imported seafood production required to satisfy national seafood consumption, and is estimated using a multi-regional input output model. Thus, we reconstruct for the first time the global fish biomass flows in national supply chains to estimate consumption footprints at the global, country and sector levels (capture fisheries, aquaculture, distribution and processing, and reduction into fishmeal and fish oil) taking into account the biomass supply from beyond national borders.


Subject(s)
Aquaculture , Fisheries , Climate Change , Food Supply , Seafood
5.
Sci Rep ; 7(1): 3365, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611466

ABSTRACT

Mediterranean fin whales comprise a genetically distinct population, listed as Vulnerable (VU) in the IUCN Red List. Collisions with vessels are believed to represent the main cause of human-induced mortality. The identification of critical habitats (including migration routes) incorporating satellite telemetry data is therefore crucial to develop focussed conservation efforts. Between 2012 and 2015 thirteen fin whales were equipped with satellite transmitters, 8 in the Pelagos Sanctuary (although two ceased within two days) and 5 in the Strait of Sicily, to evaluate movements and habitat use. A hierarchical switching state-space model was used to identify transiting and area-restricted search (ARS) behaviours, believed to indicate foraging activities. All whales undertook mid- to long-distance migrations, crossing some of the world's busiest maritime routes. Areas where the animals predominantly engaged in ARS behaviour were identified in both study areas. The telemetry data were compared with results from ecosystem niche modelling, and showed that 80% of tagged whale positions was near (<7 km) the closest suitable habitat. The results contribute to the view that precautionary management should include establishment of a coordinated and dynamic basin-wide management scheme; if appropriate, this may include the establishment of protected areas by specific regional Conventions.


Subject(s)
Animal Migration/physiology , Ecosystem , Fin Whale/physiology , Population Dynamics , Remote Sensing Technology/methods , Satellite Communications , Animals , Mediterranean Sea , Seasons
6.
Sci Rep ; 6: 34162, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27686533

ABSTRACT

Mediterranean ecosystems support important processes and functions that bring direct benefits to human society. Yet, marine ecosystem services are usually overlooked due to the challenges in identifying and quantifying them. This paper proposes the application of several biophysical and ecosystem modelling approaches to assess spatially and temporally the sustainable use and supply of selected marine ecosystem services. Such services include food provision, water purification, coastal protection, lifecycle maintenance and recreation, focusing on the Mediterranean region. Overall, our study found a higher number of decreasing than increasing trends in the natural capacity of the ecosystems to provide marine and coastal services, while in contrast the opposite was observed to be true for the realised flow of services to humans. Such a study paves the way towards an effective support for Blue Growth and the European maritime policies, although little attention is paid to the quantification of marine ecosystem services in this context. We identify a key challenge of integrating biophysical and socio-economic models as a necessary step to further this research.

SELECTION OF CITATIONS
SEARCH DETAIL
...