Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
EMBO Mol Med ; 15(2): e16478, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36652330

ABSTRACT

Exome sequencing has introduced a paradigm shift for the identification of germline variations responsible for Mendelian diseases. However, non-coding regions, which make up 98% of the genome, cannot be captured. The lack of functional annotation for intronic and intergenic variants makes RNA-seq a powerful companion diagnostic. Here, we illustrate this point by identifying six patients with a recessive Osteogenesis Imperfecta (OI) and neonatal progeria syndrome. By integrating homozygosity mapping and RNA-seq, we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that segregated with the disease. Using SI-NET-seq, we document that TAPT1's nascent transcription was not affected in patients' fibroblasts, indicating instead that this variant leads to an alteration of pre-mRNA processing. Predicted to serve as an alternative splicing branchpoint, this mutation enhances TAPT1 exon 12 skipping, creating a protein-null allele. Additionally, our study reveals dysregulation of pathways involved in collagen and extracellular matrix biology in disease-relevant cells. Overall, our work highlights the power of transcriptomic approaches in deciphering the repercussions of non-coding variants, as well as in illuminating the molecular mechanisms of human diseases.


Subject(s)
Exome Sequencing , Humans , Infant, Newborn , Base Sequence , Exons , Mutation , RNA, Messenger/genetics
2.
Sci Immunol ; 7(75): eabi4611, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36112693

ABSTRACT

Dipeptidyl peptidase 9 (DPP9) is a direct inhibitor of NLRP1, but how it affects inflammasome regulation in vivo is not yet established. Here, we report three families with immune-associated defects, poor growth, pancytopenia, and skin pigmentation abnormalities that segregate with biallelic DPP9 rare variants. Using patient-derived primary cells and biochemical assays, these variants were shown to behave as hypomorphic or knockout alleles that failed to repress NLRP1. The removal of a single copy of Nlrp1a/b/c, Asc, Gsdmd, or Il-1r, but not Il-18, was sufficient to rescue the lethality of Dpp9 mutant neonates in mice. Similarly, dpp9 deficiency was partially rescued by the inactivation of asc, an obligate downstream adapter of the NLRP1 inflammasome, in zebrafish. These experiments suggest that the deleterious consequences of DPP9 deficiency were mostly driven by the aberrant activation of the canonical NLRP1 inflammasome and IL-1ß signaling. Collectively, our results delineate a Mendelian disorder of DPP9 deficiency driven by increased NLRP1 activity as demonstrated in patient cells and in two animal models of the disease.


Subject(s)
Apoptosis Regulatory Proteins , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inflammasomes , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , Interleukin-1/metabolism , NLR Proteins/genetics , Zebrafish
3.
Oral Oncol ; 128: 105806, 2022 05.
Article in English | MEDLINE | ID: mdl-35339025

ABSTRACT

OBJECTIVES: Ribavirin inhibits eukaryotic translation initiation factor 4E (eIF4E), thereby decreasing cap-dependent translation. In this two-part study, we assessed the pharmacodynamic effects and therapeutic potential of ribavirin in human papillomavirus (HPV)-related malignancies. METHODS: In the pharmacodynamic study, ribavirin (400 mg BID for 14 days) was evaluated in 8 patients with HPV-positive localized oropharyngeal carcinoma with phosphorylated-eIF4E (p-eIF4E) ≥ 30%. In the therapeutic study, ribavirin (1400 mg BID in 28-day cycles, continuously dosed) was evaluated in 12 patients with recurrent and/or metastatic HPV-related cancer. Dose interruptions or reductions were allowed according to prespecified criteria. Toxicities were assessed in accordance with National Cancer Institute Common Terminology Criteria for Adverse Events version 4; response was assessed using Response Evaluation Criteria in Solid Tumors version 1.1. Patients remained on study until disease progression or unacceptable toxicity. RESULTS: Six patients were evaluable in the pharmacodynamic study: 4 had decreased p-eIF4E after 14 days of ribavirin. In the therapeutic study, 12 patients were evaluable for toxicity, and 9 were evaluable for response. Among these, median follow-up was 3.5 months, and best overall response was stable disease in 5 patients and progression of disease in 4 patients. Median progression-free survival was 1.8 months. The most common treatment-related adverse events (grade > 2) were anemia, dyspnea, and hyperbilirubinemia. All patients had anemia (grades 1-3), with 33% having at least 1 dose reduction. CONCLUSION: Oral ribavirin decreases p-eIF4E levels and is well-tolerated. However, a clear signal of efficacy in patients with recurrent and/or metastatic HPV-related cancers was not observed. (NCT02308241, NCT01268579).


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Cell Line, Tumor , Eukaryotic Initiation Factor-4E , Humans , Papillomaviridae , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Pilot Projects , Ribavirin/pharmacology , Ribavirin/therapeutic use
4.
Nat Med ; 27(9): 1646-1654, 2021 09.
Article in English | MEDLINE | ID: mdl-34183838

ABSTRACT

The pathophysiology of adverse events following programmed cell death protein 1 (PD-1) blockade, including tuberculosis (TB) and autoimmunity, remains poorly characterized. We studied a patient with inherited PD-1 deficiency and TB who died of pulmonary autoimmunity. The patient's leukocytes did not express PD-1 or respond to PD-1-mediated suppression. The patient's lymphocytes produced only small amounts of interferon (IFN)-γ upon mycobacterial stimuli, similarly to patients with inborn errors of IFN-γ production who are vulnerable to TB. This phenotype resulted from a combined depletion of Vδ2+ γδ T, mucosal-associated invariant T and CD56bright natural killer lymphocytes and dysfunction of other T lymphocyte subsets. Moreover, the patient displayed hepatosplenomegaly and an expansion of total, activated and RORγT+ CD4-CD8- double-negative αß T cells, similar to patients with STAT3 gain-of-function mutations who display lymphoproliferative autoimmunity. This phenotype resulted from excessive amounts of STAT3-activating cytokines interleukin (IL)-6 and IL-23 produced by activated T lymphocytes and monocytes, and the STAT3-dependent expression of RORγT by activated T lymphocytes. Our work highlights the indispensable role of human PD-1 in governing both antimycobacterial immunity and self-tolerance, while identifying potentially actionable molecular targets for the diagnostic and therapeutic management of TB and autoimmunity in patients on PD-1 blockade.


Subject(s)
Autoimmunity/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Programmed Cell Death 1 Receptor/genetics , STAT3 Transcription Factor/genetics , Tuberculosis/immunology , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD56 Antigen/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Child , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/adverse effects , Interleukin-23/genetics , Interleukin-6/genetics , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/pathology , Male , Mycobacterium tuberculosis/pathogenicity , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/mortality , Programmed Cell Death 1 Receptor/deficiency , Tuberculosis/genetics , Tuberculosis/mortality
5.
N Engl J Med ; 382(5): 437-445, 2020 01 30.
Article in English | MEDLINE | ID: mdl-31995689

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) can cause severe disease in children and adults with a variety of inherited or acquired T-cell immunodeficiencies, who are prone to multiple infections. It can also rarely cause disease in otherwise healthy persons. The pathogenesis of idiopathic CMV disease is unknown. Inbred mice that lack the gene encoding nitric oxide synthase 2 (Nos2) are susceptible to the related murine CMV infection. METHODS: We studied a previously healthy 51-year-old man from Iran who after acute CMV infection had an onset of progressive CMV disease that led to his death 29 months later. We hypothesized that the patient may have had a novel type of inborn error of immunity. Thus, we performed whole-exome sequencing and tested candidate mutant alleles experimentally. RESULTS: We found a homozygous frameshift mutation in NOS2 encoding a truncated NOS2 protein that did not produce nitric oxide, which determined that the patient had autosomal recessive NOS2 deficiency. Moreover, all NOS2 variants that we found in homozygosity in public databases encoded functional proteins, as did all other variants with an allele frequency greater than 0.001. CONCLUSIONS: These findings suggest that inherited NOS2 deficiency was clinically silent in this patient until lethal infection with CMV. Moreover, NOS2 appeared to be redundant for control of other pathogens in this patient. (Funded by the National Center for Advancing Translational Sciences and others.).


Subject(s)
Cytomegalovirus Infections , Frameshift Mutation , Nitric Oxide Synthase Type II/deficiency , Fatal Outcome , Female , Genotype , Homozygote , Humans , Loss of Function Mutation , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pedigree , Exome Sequencing
6.
Proc Natl Acad Sci U S A ; 116(38): 19055-19063, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31484767

ABSTRACT

Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1ß secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1ß at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Gain of Function Mutation , Homozygote , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Respiratory Tract Infections/genetics , Respiratory Tract Infections/pathology , Child, Preschool , Cytokines/metabolism , Female , Humans , Infant , Inflammasomes , Keratinocytes/cytology , Keratinocytes/immunology , Keratinocytes/metabolism , Male , NLR Proteins , Pedigree , Siblings , Syndrome
7.
J Exp Med ; 216(9): 2057-2070, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31270247

ABSTRACT

Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients' fibroblast phenotypes are rescued with WT IFNAR1 Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.


Subject(s)
Inheritance Patterns/genetics , Measles Vaccine/adverse effects , Receptor, Interferon alpha-beta/deficiency , Yellow Fever Vaccine/adverse effects , Adolescent , Alleles , Child , Female , Humans , Immunity , Infant , Interferon Type I/metabolism , Male , Measles Vaccine/immunology , Mutant Proteins/metabolism , Mutation/genetics , Pedigree , Receptor, Interferon alpha-beta/genetics , Signal Transduction , Yellow Fever Vaccine/immunology
8.
J Exp Med ; 216(8): 1777-1790, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31213488

ABSTRACT

Fulminant viral hepatitis (FVH) is a devastating and unexplained condition that strikes otherwise healthy individuals during primary infection with common liver-tropic viruses. We report a child who died of FVH upon infection with hepatitis A virus (HAV) at age 11 yr and who was homozygous for a private 40-nucleotide deletion in IL18BP, which encodes the IL-18 binding protein (IL-18BP). This mutation is loss-of-function, unlike the variants found in a homozygous state in public databases. We show that human IL-18 and IL-18BP are both secreted mostly by hepatocytes and macrophages in the liver. Moreover, in the absence of IL-18BP, excessive NK cell activation by IL-18 results in uncontrolled killing of human hepatocytes in vitro. Inherited human IL-18BP deficiency thus underlies fulminant HAV hepatitis by unleashing IL-18. These findings provide proof-of-principle that FVH can be caused by single-gene inborn errors that selectively disrupt liver-specific immunity. They also show that human IL-18 is toxic to the liver and that IL-18BP is its antidote.


Subject(s)
Genetic Diseases, Inborn/complications , Hepatitis A/genetics , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Massive Hepatic Necrosis/genetics , Child , Cohort Studies , Female , Gene Frequency , Hep G2 Cells , Hepatitis A/virology , Hepatitis A Virus, Human , Hepatocytes/metabolism , Homozygote , Humans , Interleukin-18/metabolism , Killer Cells, Natural/immunology , Liver/metabolism , Loss of Function Mutation , Lymphocyte Activation/genetics , Macrophages/metabolism , Male , Massive Hepatic Necrosis/virology , Pedigree , Exome Sequencing
9.
J Exp Med ; 215(10): 2567-2585, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30143481

ABSTRACT

Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.


Subject(s)
Alleles , Homozygote , Influenza, Human , Interferon-Stimulated Gene Factor 3, gamma Subunit/deficiency , Orthomyxoviridae/immunology , Pneumonia, Viral , Female , Humans , Infant , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/pathology , Interferon alpha-2/genetics , Interferon alpha-2/immunology , Interferon-Stimulated Gene Factor 3, gamma Subunit/immunology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology
10.
J Exp Med ; 214(7): 1949-1972, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28606988

ABSTRACT

MDA5 is a cytosolic sensor of double-stranded RNA (ds)RNA including viral byproducts and intermediates. We studied a child with life-threatening, recurrent respiratory tract infections, caused by viruses including human rhinovirus (HRV), influenza virus, and respiratory syncytial virus (RSV). We identified in her a homozygous missense mutation in IFIH1 that encodes MDA5. Mutant MDA5 was expressed but did not recognize the synthetic MDA5 agonist/(ds)RNA mimic polyinosinic-polycytidylic acid. When overexpressed, mutant MDA5 failed to drive luciferase activity from the IFNB1 promoter or promoters containing ISRE or NF-κB sequence motifs. In respiratory epithelial cells or fibroblasts, wild-type but not knockdown of MDA5 restricted HRV infection while increasing IFN-stimulated gene expression and IFN-ß/λ. However, wild-type MDA5 did not restrict influenza virus or RSV replication. Moreover, nasal epithelial cells from the patient, or fibroblasts gene-edited to express mutant MDA5, showed increased replication of HRV but not influenza or RSV. Thus, human MDA5 deficiency is a novel inborn error of innate and/or intrinsic immunity that causes impaired (ds)RNA sensing, reduced IFN induction, and susceptibility to the common cold virus.


Subject(s)
Interferon-Induced Helicase, IFIH1/genetics , Mutation , Picornaviridae Infections/genetics , Picornaviridae Infections/virology , Rhinovirus/physiology , Antiviral Agents/pharmacology , Base Sequence , Cells, Cultured , Child, Preschool , DNA Mutational Analysis/methods , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression/drug effects , Genes, Recessive/genetics , Heterozygote , Homozygote , Host-Pathogen Interactions , Humans , Interferon-Induced Helicase, IFIH1/deficiency , Interferons/pharmacology , Male , Pedigree
11.
J Immunol ; 188(8): 3603-10, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22442444

ABSTRACT

Monocytes can differentiate into various cell types with unique specializations depending on their environment. Under certain inflammatory conditions, monocytes upregulate expression of the dendritic cell marker CD11c together with MHC and costimulatory molecules. These phenotypic changes indicate monocyte differentiation into a specialized subset of dendritic cells (DCs), often referred to as monocyte-derived DCs or inflammatory DCs (iDCs), considered important mediators of immune responses under inflammatory conditions triggered by infection or vaccination. To characterize the relative contribution of cDCs and iDCs under conditions that induce strong immunity to coadministered Ags, we analyzed the behavior of spleen monocytes in response to anti-CD40 treatment. We found that under sterile inflammation in mice triggered by CD40 ligation, spleen monocytes can rapidly and uniformly exhibit signs of activation, including a surface phenotype typically associated with their conversion into DCs. These inflammatory monocytes remain closely related to their monocytic lineage, preserving expression of CD115, scavenging function, tissue distribution and poor capacity for Ag presentation characteristic of their monocyte precursors. In addition, 3-4 d after delivery of the inflammatory stimuli, these cells reverted to a monocyte-associated phenotype typical of the steady state. These findings indicate that, in response to anti-CD40 treatment, spleen monocytes are activated and express certain DC surface markers without acquiring functional characteristics associated with DCs.


Subject(s)
CD11c Antigen/metabolism , Cell Differentiation/immunology , Dendritic Cells/metabolism , Monocytes/metabolism , Spleen/immunology , Animals , Antibodies, Neutralizing/pharmacology , Biomarkers/metabolism , CD11c Antigen/immunology , CD40 Antigens/immunology , CD40 Antigens/metabolism , Cell Differentiation/genetics , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/immunology , Gene Expression Regulation , Inflammation/genetics , Inflammation/immunology , Mice , Mice, Inbred Strains , Monocytes/cytology , Monocytes/immunology , Phenotype , Receptor, Macrophage Colony-Stimulating Factor/immunology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction , Spleen/cytology , Spleen/drug effects
12.
J Immunol ; 185(4): 2140-6, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20644175

ABSTRACT

Dendritic cell (DC) maturation is critical for the regulation of T cell responses. The downregulation of endocytosis on maturation is considered a key adaptation that dissociates prior Ag capture by DCs from subsequent T cell engagement. To study the dynamics of Ag capture and presentation in situ, we studied the capacity for Ag uptake by DCs matured in their natural tissue environment. We found that after maturation in vivo, mouse DCs retained a robust capacity to capture soluble Ags. Furthermore, Ags internalized by mature DCs were efficiently presented on MHC class II and cross-presented on MHC class I. These results suggest that under inflammatory conditions, mature DCs may contribute to T cell stimulation without exclusively relying on prior exposure to Ags as immature DC precursors.


Subject(s)
Antigen Presentation/immunology , Antigens/immunology , Cell Differentiation/immunology , Dendritic Cells/immunology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Endocytosis/immunology , Flow Cytometry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Ovalbumin/immunology , Ovalbumin/pharmacology
13.
PLoS One ; 5(6): e11144, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20585396

ABSTRACT

BACKGROUND: Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs) that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression. METHODOLOGY/PRINCIPAL FINDINGS: We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells. CONCLUSIONS/SIGNIFICANCE: This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.


Subject(s)
Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Vaccines/immunology , Animals , Mice , Mice, Knockout
14.
Mol Biochem Parasitol ; 136(2): 265-72, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15478805

ABSTRACT

Purine nucleoside and nucleobase transporters play a vital role in the metabolism and survival of Trypanosoma brucei because this parasitic protozoan is unable to synthesize purines de novo and thus must acquire preformed purines from its hosts. These parasites express a variety of nucleoside and nucleobase permeases with diverse substrate specificities and distinct patterns of expression during the trypanosome life cycle. We report here that expression of the newly characterized T. brucei nucleoside transporter 10 gene (TbNT10) is up-regulated in the short stumpy form of the life cycle, the bloodstream form of the parasite that is pre-adapted for infection of the tsetse fly vector. Functional expression of TbNT10 in Saccharomyces cerevisiae reveals that the TbNT10 gene encodes an adenosine/guanosine/inosine transporter with apparent Km values of approximately 1 microM and hence is a high affinity purine nucleoside transporter. The restricted expression of TbNT10 during the life cycle suggests that the functional properties of this permease may be specialized to support development and growth of the differentiated short stumpy form or to promote the transformation of short stumpy to procyclic forms within the insect vector.


Subject(s)
Nucleoside Transport Proteins/metabolism , Purine Nucleosides/metabolism , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Protozoan/genetics , Gene Expression Regulation, Developmental , Genes, Protozoan , Kinetics , Molecular Sequence Data , Nucleoside Transport Proteins/genetics , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Sequence Homology, Amino Acid , Trypanosoma brucei brucei/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...