Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
AJNR Am J Neuroradiol ; 40(9): 1458-1463, 2019 09.
Article in English | MEDLINE | ID: mdl-31413006

ABSTRACT

BACKGROUND AND PURPOSE: Image-based classification of lower-grade glioma molecular subtypes has substantial prognostic value. Diffusion tensor imaging has shown promise in lower-grade glioma subtyping but currently requires lengthy, nonstandard acquisitions. Our goal was to investigate lower-grade glioma classification using a machine learning technique that estimates fractional anisotropy from accelerated diffusion MR imaging scans containing only 3 diffusion-encoding directions. MATERIALS AND METHODS: Patients with lower-grade gliomas (n = 41) (World Health Organization grades II and III) with known isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status were imaged preoperatively with DTI. Whole-tumor volumes were autodelineated using conventional anatomic MR imaging sequences. In addition to conventional ADC and fractional anisotropy reconstructions, fractional anisotropy estimates were computed from 3-direction DTI subsets using DiffNet, a neural network that directly computes fractional anisotropy from raw DTI data. Differences in whole-tumor ADC, fractional anisotropy, and estimated fractional anisotropy were assessed between IDH-wild-type and IDH-mutant lower-grade gliomas with and without 1p/19q codeletion. Multivariate classification models were developed using whole-tumor histogram and texture features from ADC, ADC + fractional anisotropy, and ADC + estimated fractional anisotropy to identify the added value provided by fractional anisotropy and estimated fractional anisotropy. RESULTS: ADC (P = .008), fractional anisotropy (P < .001), and estimated fractional anisotropy (P < .001) significantly differed between IDH-wild-type and IDH-mutant lower-grade gliomas. ADC (P < .001) significantly differed between IDH-mutant gliomas with and without codeletion. ADC-only multivariate classification predicted IDH mutation status with an area under the curve of 0.81 and codeletion status with an area under the curve of 0.83. Performance improved to area under the curve = 0.90/0.94 for the ADC + fractional anisotropy classification and to area under the curve = 0.89/0.89 for the ADC + estimated fractional anisotropy classification. CONCLUSIONS: Fractional anisotropy estimates made from accelerated 3-direction DTI scans add value in classifying lower-grade glioma molecular status.


Subject(s)
Brain Neoplasms/classification , Brain Neoplasms/diagnostic imaging , Diffusion Tensor Imaging/methods , Glioma/classification , Glioma/diagnostic imaging , Molecular Imaging/methods , Adolescent , Adult , Aged , Anisotropy , Area Under Curve , Brain Neoplasms/genetics , Cohort Studies , Female , Glioma/genetics , Humans , Image Processing, Computer-Assisted , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation/genetics , Retrospective Studies , Young Adult
2.
AJNR Am J Neuroradiol ; 35(5): 891-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24371027

ABSTRACT

BACKGROUND AND PURPOSE: MR imaging-guided focused sonography surgery is a new stereotactic technique that uses high-intensity focused sonography to heat and ablate tissue. The goal of this study was to describe MR imaging findings pre- and post-ventralis intermedius nucleus lesioning by MR imaging-guided focused sonography as a treatment for essential tremor and to determine whether there was an association between these imaging features and the clinical response to MR imaging-guided focused sonography. MATERIALS AND METHODS: Fifteen patients with medication-refractory essential tremor prospectively gave consent; were enrolled in a single-site, FDA-approved pilot clinical trial; and were treated with transcranial MR imaging-guided focused sonography. MR imaging studies were obtained on a 3T scanner before the procedure and 24 hours, 1 week, 1 month, and 3 months following the procedure. RESULTS: On T2-weighted imaging, 3 time-dependent concentric zones were seen at the site of the focal spot. The inner 2 zones showed reduced ADC values at 24 hours in all patients except one. Diffusion had pseudonormalized by 1 month in all patients, when the cavity collapsed. Very mild postcontrast enhancement was seen at 24 hours and again at 1 month after MR imaging-guided focused sonography. The total lesion size and clinical response evolved inversely compared with each other (coefficient of correlation = 0.29, P value = .02). CONCLUSIONS: MR imaging-guided focused sonography can accurately ablate a precisely delineated target, with typical imaging findings seen in the days, weeks, and months following the treatment. Tremor control was optimal early when the lesion size and perilesional edema were maximal and was less later when the perilesional edema had resolved.


Subject(s)
Essential Tremor/pathology , Essential Tremor/surgery , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Surgery, Computer-Assisted/methods , Aged , Essential Tremor/diagnostic imaging , Female , Humans , Longitudinal Studies , Male , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...