Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2303706, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353067

ABSTRACT

Smart windows that can passively regulate incident solar radiation by dynamically modulating optical transmittance have attracted increasing scientific interest due to their potential economic and environmental savings. However, challenges remain in the global adoption of such systems, given the extreme variability in climatic and economic conditions across different geographical locations. Aiming these issues, a methylcellulose (MC) salt system is synthesized with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window exhibits superior heat shielding potential below transition temperatures, becoming opaque at temperatures above the Lower Critical Solution Temperature and reducing the solar heat gain by 55%. This optical tunability is attributable to the particle size change triggered by the temperature-induced reversible coil-to-globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. During the field tests, MC-based windows demonstrated a 9 °C temperature decrease compared to double-pane windows on sunny days and a 5 °C increase during winters, with simulations predicting an 11% energy savings. The ubiquitous availability of materials, low cost, and ease-of-manufacturing will provide technological equity and foster the ambition toward net-zero buildings.

2.
Adv Sci (Weinh) ; 10(18): e2300340, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37092566

ABSTRACT

The energy crisis has arisen as the most pressing concern and top priority for policymakers, with buildings accounting for over 40% of global energy consumption. Currently, single-function envelopes cannot satisfy energy efficiency for next-generation buildings. Designing buildings with high mechanical robustness, thermal insulation properties, and more functionalities has attracted worldwide attention. Further optimization based on bioinspired design and material efficiency improvement has been adopted as effective approaches to achieve satisfactory performance. Herein, inspired by the strong and porous cuttlefish bone, a cement aerogel through self-assembly of calcium aluminum silicate hydrate nanoparticles (C-A-S-H, a major component in cement) in a polymeric solution as a building envelop is developed. The as-synthesized cement aerogel demonstrates ultrahigh mechanical performance in terms of stiffness (315.65 MPa) and toughness (14.68 MJ m-3 ). Specifically, the highly porous microstructure with multiscale pores inside the cement aerogel greatly inhibits heat transfer, therefore achieving ultralow thermal conductivity (0.025 W m-1 K-1 ). Additionally, the inorganic C-A-S-H nanoparticles in cement aerogel form a barrier against fire for good fire retardancy (limit oxygen index, LOI ≈ 46.26%, UL94-V0). The versatile cement aerogel featuring high mechanical robustness, remarkable thermal insulation, light weight, and fire retardancy is a promising candidate for practical building applications.


Subject(s)
Aluminum , Nanoparticles , Calcium , Carbon , Hot Temperature
3.
Materials (Basel) ; 13(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640659

ABSTRACT

This study develops a novel self-sensing cement composite by simply mixing reduced graphene oxide (rGO) in cementitious material. The experimental results indicate that, owing to the excellent dispersion method, the nucleation and two-dimensional morphological effect of rGO optimizes the microstructure inside cement-based material. This would increase the electric conductivity, thermal property and self-induction system of cement material, making it much easier for cementitious material to better warn about impending damage. The use of rGO can improve the electric conductivity and electric shielding property of rGO-paste by 23% and 45%. The remarkable enhancement was that the voltage change rate of 1.00 wt.%-rGO paste under six-cycle loads increased from 4% to 12.6%, with strain sensitivity up to 363.10, without compromising the mechanical properties. The maximum compressive strength of the rGO-mortar can be increased from 55 MPa to 71 MPa. In conclusion, the research findings provide an effective strategy to functionalize cement materials by mixing rGO and to achieve the stronger electric shielding property and higher-pressure sensitivity of rGO-cement composites, leading to the development of a novel high strength self-sensing cement material with a flexural strength up to 49%.

4.
Materials (Basel) ; 12(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387218

ABSTRACT

Cracks greatly impact the durability of concrete structures due to their influence on the migration of chloride ions and the corrosion process of steel bars. This study investigates the effects of transverse cracks on chloride diffusion and the corrosion behavior of two types of steel bars (low carbon steel and corrosion resistant steel) in fly ash concrete with 1 kg/m3 solution-polymerized super absorbent polymer. Electrochemical impedance spectroscopy was used to monitor the chloride-induced corrosion behavior of steel bars in concrete. The chloride profile around cracks was tested via chemical titration. The corrosion products diffusion area was photographed and measured to evaluate the influences of cracks on the corrosion degree of steel bars. Transverse cracks greatly influence the chloride ion transport. When their width is less than 0.15 mm, cracks exert little influence on both chloride diffusion and steel corrosion. When the crack width exceeds 0.15 mm, the chloride ion transmission coefficient is significantly improved and steel corrosion is accelerated. However, when the crack width exceeds 0.20 mm, this effect is gradually weakened. Based on the experimental data, a quantitative relationship between the crack width and the chloride ion transmission coefficient in electric acceleration was established.

SELECTION OF CITATIONS
SEARCH DETAIL
...