Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 110(12): 5927-35, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16553400

ABSTRACT

The effect of initial synthesis solution pH and tetramethylammonium silicate concentration in the synthesis solution on the physical and chemical properties of MCM-41 was systematically investigated using N(2) physisorption, X-ray diffraction, temperature-programmed reduction, in situ Fourier transform IR, UV-vis, and X-ray absorption spectroscopies. pH and tetramethylammonium (TMA) fraction affect the porosity of MCM-41 and the reducibility of incorporated Ni cations; higher pH and TMA concentration produced more porosity with higher stability against reduction, which is attributed to more metal ions locating in the interior of the silica walls. The control of the pore diameter of mesoporous MCM-41 at the sub-nanometer scale may be accomplished by adjusting the pH and TMA fraction. pH may be used to control the surface free silanol group density and nickel reduction degree as well, and this is useful in the design of a specific catalyst for particular reactions, such as CO methanation, which requires highly dispersed, stable metallic clusters with controllable size.

2.
J Phys Chem B ; 109(27): 13237-46, 2005 Jul 14.
Article in English | MEDLINE | ID: mdl-16852651

ABSTRACT

Highly ordered Ni-MCM-41 samples with nearly atomically dispersed nickel ions were prepared reproducibly and characterized. Similar to the Co-MCM-41 samples, the pore diameter and porosity can be precisely controlled by changing the synthesis surfactant chain length. Nickel was incorporated by isomorphous substitution of silicon in the MCM-41 silica framework, which makes the Ni-MCM-41 a physically stable catalyst in harsh reaction conditions such as CO disproportionation to single wall carbon nanotubes or CO2 methanation. X-ray absorption spectroscopy results indicate that the overall local environment of nickel in Ni-MCM-41 was a tetrahedral or distorted tetrahedral coordination with surrounding oxygen anions. Hydrogen TPR revealed that our Ni-MCM-41 samples have high stability against reduction; however, compared to Co-MCM-41, the Ni-MCM-41 has a lower reduction temperature, and both the H2-TPR and in situ XANES TPR reveal that the reducibility of nickel is not clearly correlated with the pore radius of curvature, as in the case of Co-MCM-41. This is probably a result of nickel being thermodynamically more easily reduced than cobalt. The stability of the structural order of Ni-MCM-41 has been investigated under SWNT synthesis and CO2 methanation reaction conditions as both require catalyst exposure to reducing environments leading to formation of metallic Ni clusters. Nitrogen physisorption and XRD results show that structural order was maintained under both SWNT synthesis and CO2 methanation reaction conditions. EXAFS results demonstrate that the nickel particle size can be controlled by different prereduction temperatures but not by the pore radius of curvature as in the case of Co-MCM-41.

3.
Inorg Chem ; 41(11): 2953-9, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12033905

ABSTRACT

An ion-ion reaction route under solvothermal condition at relatively low temperatures was first put forward to the preparation of tetragonal Cu(3)SnS(4) nanorods, on the basis of the strategy that 2D framework structure of Cu(3)SnS(4) containing layers could provide orientation for the growth of quasi-1D nanomaterials. X-ray diffraction (XRD) pattern, transmission electronic microscope (TEM) images, electronic diffraction (ED) pattern, X-ray photoelectron spectra (XPS), energy-dispersive X-ray analysis (EDXA), Mössbauer spectrum, Raman spectrum, thermal analysis (DTA and TGA), ultraviolet and visible light (UV-vis) spectrum, and photoluminescence (PL) spectrum were used to characterize the products. On the basis of a series of supplementary experiments and the result of infrared absorption spectrum (IR), a reaction mechanism was proposed: ethanol as solvent and reductant and trace water/CH(3)CSNH(2) as sulfur source and acid-making components could form 2D network through hydrogen bonds, which provided the orientation for the formation of a 2D framework structure; appropriate concentration of CH(3)CSNH(2), warming speed, reaction constant temperatures (T(rc)), and reaction time also played important roles.

4.
Inorg Chem ; 41(7): 1850-4, 2002 Apr 08.
Article in English | MEDLINE | ID: mdl-11925179

ABSTRACT

GaP nanorods and nanospheres were synthesized from a mild benzene-thermal route at 240 and 300 degrees C, respectively, using Na, P, and GaCl(3) as the starting materials. The structure of the products was identified as zinc blende phase by X-ray powder diffraction (XRD). Transmission electron microscopy (TEM) images showed that, when the reaction temperature was 240 degrees C, the products were nanorods with widths of 20-40 nm and lengths of 200-500 nm and nanospheres with diameters of 20-40 nm. However, when the reaction temperature was increased to 300 degrees C, the products were only nanospheres, and the diameters increased to 40-60 nm. The reaction proceeded through a metallic gallium intermediate, and a solution-liquid-solid (SLS) mechanism was proposed for the one-dimensional growth. The products were also investigated by UV-vis absorption and X-ray photoelectron spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL