Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Biomacromolecules ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743836

ABSTRACT

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.

2.
Adv Mater ; : e2401482, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695389

ABSTRACT

Lithium-ion batteries (LIBs), in which lithium ions function as charge carriers, are considered the most competitive energy storage devices due to their high energy and power density. However, battery materials, especially with high capacity undergo side reactions and changes that result in capacity decay and safety issues. A deep understanding of the reactions that cause changes in the battery's internal components and the mechanisms of those reactions is needed to build safer and better batteries. This review focuses on the processes of battery failures, with voltage and temperature as the underlying factors. Voltage-induced failures result from anode interfacial reactions, current collector corrosion, cathode interfacial reactions, overcharge, and overdischarge, while temperature-induced failure mechanisms include SEI decomposition, separator damage, and interfacial reactions between electrodes and electrolytes. The review also presents protective strategies for controlling these reactions. As a result, the reader is offered a comprehensive overview of the safety features and failure mechanisms of various LIB components. This article is protected by copyright. All rights reserved.

3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1251-1260, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658161

ABSTRACT

To attain the aims of high-quality agricultural development, the Ministry of Education is in the process of establishing master's and doctoral programs in biological breeding engineering at universities with a strong agricultural focus. These programs will incorporate a dedicated course on agricultural synthetic biology, aiming to equip graduate students with the ability to tackle critical scientific and technological challenges in biological breeding while fostering innovations in agriculture. The course places emphasis on interdisciplinary collaboration, innovation, and the practical application of new advancement, ensuring compatibility with both domestic and international agricultural standards in the future.


Subject(s)
Agriculture , Synthetic Biology , Synthetic Biology/education , Education, Graduate , Crops, Agricultural/growth & development
4.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38671869

ABSTRACT

Currently, the effects of dietary levels of n-3 highly unsaturated fatty acids (HUFAs) on the growth performance, antioxidant capacity, immunity, and serum oxylipin profiles of female F2-generation Yangtze sturgeon remain unknown. A total of 75 Yangtze sturgeons, an endangered freshwater fish species, with an average body weight of 3.60 ± 0.83 kg, were randomly allocated to 15 concrete pools, with each dietary group represented by 5 fish per pool. The fish were fed five different experimental diets containing various levels of n-3 HUFAs (0.5%, 1.0%, 1.5%, 2.0%, and 2.4%). After a feeding period of 5 months, no significant differences in the growth performances of the fish were observed among the five dietary groups (p > 0.05). However, we did note that the serum levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), and total cholesterol (TCHO) exhibited a marked increase in the fish that consumed higher dietary n-3 HUFA levels (p < 0.05). Conversely, alkaline phosphatase (ALP) activities showed a notable decrease as dietary n-3 HUFA levels increased (p < 0.05). Serum antioxidant indices, such as the activity levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), were significantly higher in the 2.4% HUFA group compared to the 0.5% HUFA group. Additionally, muscle antioxidant indices, including total antioxidant capacity (T-AOC), catalase (CAT), and SOD activity, exhibited notable increases as dietary n-3 HUFA levels increased (p < 0.05). Furthermore, there was a decrease in malondialdehyde (MDA) levels as dietary n-3 HUFA levels increased (p < 0.05). In relation to immune indices, only serum immunoglobulin M (IgM) and muscle complement 3 (C3) were found to be influenced by dietary n-3 HUFA levels (p < 0.05). A total of 80 oxylipins were quantified, and our subsequent K-means cluster analysis resulted in the classification of 62 oxylipins into 10 subclasses. Among the different n-3 HUFA diets, a total of 14 differential oxylipins were identified in the sera. These findings demonstrate that dietary supplementation with n-3 HUFAs exceeding a 1.0% level can enhance antioxidant capacity and regulate serum lipid metabolism, potentially through modulation of oxylipins derived from ARA, DHA, and EPA. These insights provide novel perspectives on the mechanisms underlying these observations.

5.
Anal Sci ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607599

ABSTRACT

The silk biodegradation process remains unclear and requires elucidation with advanced analytical tools. To address this challenge, the role of microbial primary metabolites in the deterioration of ancient silk was investigated using metabolomics and proteomics techniques in this work. The oxalic and palmitic acids were separately identified as the most abundant organic and fatty acid metabolites for silk-fabric deterioration via metabolomics. Proteomics showed that oxalic acid accelerated the degradation of silk proteins, revealing changes at the molecular level in silk. A high concentration of oxalic acid promoted the dissolution of peptides by activating the cleavage activity of various amino acids on the molecular chain of silk protein. Palmitic acid formed sedimentary particulate matter with peptides solubilised from silk proteins, indicating the possibility that traces of ancient-silk proteins remained in the fatty acids. The work presented new techniques and concepts for studying the degradation of historical fabrics and contributed to the proposal of effective measures to prevent microbial attack on silk.

6.
ACS Appl Mater Interfaces ; 16(11): 13745-13755, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446712

ABSTRACT

Currently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln2(DTD)3(DEF)4]·DEF·6H2O [LnIII = TbIII (Tb-MOF), EuIII (Eu-MOF), SmIII (Sm-MOF), and DyIII (Dy-MOF)], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms. As expected, the four Ln-MOFs demonstrated the highest proton conductivities (σ) being 0.54 × 10-3, 3.75 × 10-3, 1.28 × 10-3, and 1.92 × 10-3 S·cm-1 for the four MOFs, respectively, at 100 °C/98% relative humidity (RH). Excitingly, Dy-MOF demonstrated an extraordinary ultrahigh σ of 1 × 10-3 S·cm-1 at 30 °C/98% RH. Additionally, the plausible proton transport mechanisms were emphasized.

7.
Mar Pollut Bull ; 201: 116235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508122

ABSTRACT

Marine oil pollution is one of the major global environmental pollution problems. Marine microalgae are the foundation of the marine food chain, providing the main primary productivity of the ocean. They not only maintain the energy flow and material cycle of the entire marine ecosystem, but also play an important role in regulating global climate change. Exploring the impact of petroleum pollutants on marine microalgae is extremely important for studying marine environmental pollution. This review first introduced the sources, compositions, and forms of petroleum pollutants and their migration and transformation processes in the ocean. Then, the toxic effects of petroleum pollutants on marine microalgae were summarized. The growth of marine microalgae showed low-concentration promotion and high-concentration inhibition. The population growth and interspecific relationships of marine microalga was changed and the photosynthesis of marine microalgae was influenced. Finally, potential research directions and suggestions for marine microalgae in the future were proposed.


Subject(s)
Environmental Pollutants , Microalgae , Petroleum , Water Pollutants, Chemical , Petroleum/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity
8.
Environ Pollut ; 347: 123707, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38447652

ABSTRACT

The establishment of heterojunctions was considered as an exceptional strategy to obtain high-efficiency charge separation and enhanced photocatalytic performance. Herein, a series of FePMo/MIL-53(Fe) (FeM-53) heterojunctions were successfully constructed through in-situ growth of FePMo onto MIL-53(Fe) surface and their photocatalytic capacity were examined by visible-light-induced Cr(VI) reduction. Interestingly, the as-fabricated composites offered various photocatalytic activities controllably relying on the mass ratio of FePMo to MIL-53(Fe). Particularly, the one with the 10% ratio displayed the highest Cr(VI) reduction rate (100%) within 75 min, which was respectively over 4 and 2 folds higher than pure FePMo and MIL-53(Fe). The boosted photoactivity might be ascribed to the establishment of S-scheme heterojunction with suitable band alignment between FePMo and MIL-53(Fe), which broadened the light absorption range and improved charge separation. Further mechanism investigations implied both •O2- and e- were the key reactive species for Cr(VI) removal. Besides, the composite preserved excellent stability after 4 consecutive tests, and performed well in the presence of organic dyes. Such a S-scheme heterojunction may promise for highly efficient environmental mitigation.


Subject(s)
Chromium , Light , Coloring Agents , Software
9.
World J Clin Cases ; 12(4): 865-871, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38322683

ABSTRACT

BACKGROUND: Meckel's diverticulum is a common congenital malformation of the small intestine, with the three most common complications being obstruction, perforation, and inflammation. To date, only a few cases have been reported worldwide. In children, the clinical symptoms are similar to appendicitis. As most of the imaging features are nonspecific, the preoperative diagnosis is not precise. In addition, the clinical characteristics are highly similar to pediatric acute appendicitis, thus special attention is necessary to distinguish Meckel's diverticulum from pediatric appendicitis. Patients with poor disease control should undergo laparoscopic exploration to avoid serious complications, including intestinal necrosis, intestinal perforation and gastrointestinal bleeding. CASE SUMMARY: This report presents three cases of appendicitis in children combined with intestinal obstruction, which was caused by fibrous bands (ligaments) arising from the top part of Meckel's diverticulum, diverticular perforation, and diverticular inflammation. All three patients, aged 11-12 years, had acute appendicitis as their initial clinical presentation. All were treated by laparoscopic surgery with a favorable outcome. A complete dataset including clinical presentation, diagnostic imaging, surgical information, and histopathologic findings was also provided. CONCLUSION: Preoperative diagnosis of Meckel's diverticulum and its complications is challenging because its clinical signs and complications are similar to those of appendicitis in children. Laparoscopy combined with laparotomy is useful for diagnosis and treatment.

10.
Nanomaterials (Basel) ; 14(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38334565

ABSTRACT

The low-temperature-grown InGaAs (LT-InGaAs) photoconductive antenna has received great attention for the development of highly compact and integrated cheap THz sources. However, the performance of the LT-InGaAs photoconductive antenna is limited by its low resistivity and mobility. The generated radiated power is much weaker compared to the low-temperature-grown GaAs-based photoconductive antennas. This is mainly caused by the low abundance of excess As in LT-InGaAs with the conventional growth mode, which inevitably gives rise to the formation of As precipitate and alloy scattering after annealing. In this paper, the migration-enhanced molecular beam epitaxy technique is developed to grow high-quality (InAs)m/(GaAs)n short-period superlattices with a sharp interface instead of InGaAs on InP substrate. The improved electron mobility and resistivity at room temperature (RT) are found to be 843 cm2/(V·s) and 1648 ohm/sq, respectively, for the (InAs)m/(GaAs)n short-period superlattice. The band-edge photo-excited carrier lifetime is determined to be ~1.2 ps at RT. The calculated photocurrent intensity, obtained by solving the Maxwell wave equation and the coupled drift-diffusion/Poisson equation using the finite element method, is in good agreement with previously reported results. This work may provide a new approach for the material growth towards high-performance THz photoconductive antennas with high radiation power.

11.
J Phys Chem A ; 128(6): 1041-1048, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38311924

ABSTRACT

To determine the H-abstraction reaction probabilities of H/O/OH radicals with a polypropylene (PP) surface, a first-principles calculation was performed based on the DLPNO-CCSD(T)/CBS//M06-2X-D3/def-TZVP theory level. The PP chain model used in this study was 2,4,6-trimethylheptane. The rate constants of the H/O/OH radicals with the isolated PP chain model were calculated based on the conventional transition-state theory. By comparing the experimental values and considering the error factors and their compensation, it was concluded that the orders of magnitude of the predicted rate constants were accurate. The resulting rate constants were converted to reaction probabilities between the H/O/OH radicals and the PP surface. The method used in this study is applicable for obtaining theoretical values of surface reaction probabilities based on first-principles calculations. The calculation at the DLPNO-CCSD(T)/CBS theory level has high accuracy but consumes a large amount of computational resources. The study also demonstrated that the double-hybrid functionals, wB97x-2-D3(BJ) and rev-DSD-PBEP86-D3(BJ), with a 3-ζ or 4-ζ basis set, could reproduce the electronic energy values obtained from DLPNO-CCSD(T)/CBS while using only approximately 1/100 of the computational resources required by the latter under our computer configuration.

12.
Cureus ; 16(1): e52688, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38384624

ABSTRACT

Primary bladder lymphoma, a rare form of non-Hodgkin's lymphoma, is diagnosed through histopathology and immunostaining. Most bladder lymphomas are of the B-cell type, with a higher incidence in women and often presenting with hematuria. This report details an exceptionally rare case of primary bladder T-cell lymphoma. A 50-year-old male, without hematuria or other symptoms, was diagnosed during a routine ultrasound. A computed tomography scan showed a tumor located in the anterior, right, and posterior walls. The patient underwent transurethral resection of the bladder lesion. Pathological examination of the tumor showed that it was composed of lymphoid tissue, in accordance with peripheral T-cell lymphoma of non-Hodgkin subtype.

13.
Materials (Basel) ; 17(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399096

ABSTRACT

The growth of InGaAs quantum wells (QWs) epitaxially on InP substrates is of great interest due to their wide application in optoelectronic devices. However, conventional molecular beam epitaxy requires substrate temperatures between 400 and 500 °C, which can lead to disorder scattering, dopant diffusion, and interface roughening, adversely affecting device performance. Lower growth temperatures enable the fabrication of high-speed optoelectronic devices by increasing arsenic antisite defects and reducing carrier lifetimes. This work investigates the low-temperature epitaxial growth of InAs/GaAs short-period superlattices as an ordered replacement for InGaAs quantum wells, using migration-enhanced epitaxy (MEE) with low growth temperatures down to 200-250 °C. The InAs/GaAs multi-quantum wells with InAlAs barriers using MEE grown at 230 °C show good single crystals with sharp interfaces, without mismatch dislocations found. The Raman results reveal that the MEE mode enables the growth of (InAs)4(GaAs)3/InAlAs QWs with excellent periodicity, effectively reducing alloy scattering. The room temperature (RT) photoluminescence (PL) measurement shows the strong PL responses with narrow peaks, revealing the good quality of the MEE-grown QWs. The RT electron mobility of the sample grown in low-temperature MEE mode is as high as 2100 cm2/V∗s. In addition, the photoexcited band-edge carrier lifetime was about 3.3 ps at RT. The high-quality superlattices obtained confirm MEE's effectiveness for enabling advanced III-V device structures at reduced temperatures. This promises improved performance for applications in areas such as high-speed transistors, terahertz imaging, and optical communications.

14.
Opt Express ; 32(3): 3606-3618, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297578

ABSTRACT

In this paper, we present the bit error rate (BER) performance of the underwater wireless optical communication (UWOC) systems using the optical space shift keying (OSSK) on the gamma-gamma turbulent fading channel, which also considers pointing errors and channel estimation errors. Firstly, we develop the new expressions for the probability density function (PDF) based on the Gamma-Gamma distribution with error factors. Subsequently, we analyze the statistical characteristic of the difference in attenuation coefficients between two channels in the OSSK system, by which we provide analytical results for evaluating the average BER performance. The results show that the effective improvement of spectral efficiency (SE) and BER performance is achieved by rationally allocating the number of lasers and detectors in the system. The OSSK-UWOC system performs better when a narrow beam waist is used. Furthermore, the presence of channel estimation error brings the BER performance advantage to the system, and the system with a high channel estimation error (ρ = 0.7) shows a 4 dB improvement in signal-to-noise ratio (SNR) gain compared to the system with a low channel estimation error (ρ = 0.95). The findings in this paper can be used for the UWOC system design.

15.
Opt Express ; 32(3): 3874-3890, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297599

ABSTRACT

This paper investigates the propagation of Gaussian array beams (GABs) through seawater-to-air in the presence of oceanic turbulence, atmospheric turbulence, and wave foams. Specifically, we focus on the intensity distribution of diverse typical GAB structures (ring, multi-ring, and rectangle). Then, an innovative intensity analysis model to calculate the average intensity in each medium is proposed. Moreover, we experimentally verify the proposed method by examining the intensity fading characteristic of Gaussian beams in the seawater-to-air path. Our results show that the peak intensity is primarily affected by the refraction in the ocean and foam layer, rather than air layer. The difference of theoretical and experimental values are less than 0.13 for the peak intensity. Moreover, the intensity distributions are more significantly affected by ocean turbulence but less influenced by wind speed.

16.
J Agric Food Chem ; 72(7): 3397-3405, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38335532

ABSTRACT

The continued acquisition and propagation of antibiotic resistance genes (ARGs) in the environment confound efforts to manage the global rise in antibiotic resistance. Here, CRISPR-Cas9/sgRNAs carried by nitrogen-doped carbon dots (NCDs) were developed to precisely target multi-"high-risk" ARGs (tet, cat, and aph(3')-Ia) commonly detected in the environment. NCDs facilitated the delivery of Cas9/sgRNAs to Escherichia coli (E. coli) without cytotoxicity, achieving sustained elimination of target ARGs. The elimination was optimized using different weight ratios of NCDs and Cas9 protein (1:1, 1:20, and 1:40), and Cas9/multi sgRNAs were designed to achieve multi-cleavage of ARGs in either a single strain or mixed populations. Importantly, NCDs successfully facilitated Cas9/multi sgRNAs for resensitization of antibiotic-resistant bacteria in soil (approaching 50%), whereas Cas9/multi sgRNAs alone were inactivated in the complex environment. This work highlights the potential of a fast and precise strategy to minimize the reservoir of antibiotic resistance in agricultural system.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Anti-Bacterial Agents/pharmacology , RNA, Guide, CRISPR-Cas Systems , Escherichia coli/genetics
17.
ACS Appl Mater Interfaces ; 16(5): 6048-6056, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38286994

ABSTRACT

Batteries can be activated by external mechanical force and generate current, enabling a smart class of electrochemical-mechanical strain energy harvesters therefrom. Here, we have developed a NaxSb alloy-based harvester that is able to electrochemically convert low-frequency bending or pressing mechanical energy into electrical energy. The device is designed as a flexible symmetric cell incorporating two sodiated antimony nanoflake electrodes, whose peak power and energy output are more than twice those of other sodium-alloyed electrochemical-mechanical strain energy harvesters reported. We demonstrate that the open-circuit voltage of the device is an asymptotic function of the curvature radius in the bending mode and a linear function of pressure in the pressing mode. Taking advantage of the tunability of voltage, we present a new technology that simulates various tastes by releasing low-voltage electrical signals from the harvester. This technology can not only help people with impaired taste but also be integrated into a virtual reality system to create immersive taste experiences.

18.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 1-14, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258628

ABSTRACT

The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.


Subject(s)
Light , Luminescence , Fluorescence , Eukaryota , Green Light
19.
IEEE Trans Biomed Eng ; PP2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285582

ABSTRACT

OBJECTIVE: This article aimed to investigate the biomechanical mechanisms underlying the energetic advantages of the suspended backpacks during load carriage. METHODS: In this study, we examined eight adults walking with a 15 kg load at 5 km/h with a designed suspended backpack, in which the load could be switched to locked and suspended with four combinations of stiffness. Mechanical work and metabolic cost were measured during load carriage. RESULTS: The results showed that the suspended backpacks led to an average reduction of 23.35% in positive work, 24.77% in negative work, and a 12.51% decrease in metabolic cost across all suspended load conditions. Notably, the decreased mechanical work predominantly occurred during single support (averaging 84.19% and 71.16% for positive and negative work, respectively), rather than during double support. CONCLUSION: Walking with the suspended backpack induced a phase shift between body movement and load movement, altering the human-load interaction. This adjustment caused the body and load to move against each other, resulting in flatter trajectories of the human-load system center of mass (COM) velocities and corresponding profiles in ground reaction forces (GRFs), along with reduced vertical excursions of the trunk. Consequently, this interplay led to flatter trajectories in mechanical work rate and reduced mechanical work, ultimately contributing to the observed reduction in energetic expenditure. SIGNIFICANCE: Understanding these mechanisms is essential for the development of more effective load-carrying devices and strategies in various applications, particularly for enhancing walking abilities during load carriage.

20.
Cancer Res ; 84(3): 372-387, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37963207

ABSTRACT

Neuronal activity can drive progression of high-grade glioma by mediating mitogen production and neuron-glioma synaptic communications. Glioma stem cells (GSC) also play a significant role in progression, therapy resistance, and recurrence in glioma, which implicates potential cross-talk between neuronal activity and GSC biology. Here, we manipulated neuronal activity using chemogenetics in vitro and in vivo to study how it influences GSCs. Neuronal activity supported glioblastoma (GBM) progression and radioresistance through exosome-induced proneural-to-mesenchymal transition (PMT) of GSCs. Molecularly, neuronal activation led to elevated miR-184-3p in neuron-derived exosomes that were taken up by GSCs and reduced the mRNA N6-methyladenosine (m6A) levels by inhibiting RBM15 expression. RBM15 deficiency decreased m6A modification of DLG3 mRNA and subsequently induced GSC PMT by activating the STAT3 pathway. Loss of miR-184-3p in cortical neurons reduced GSC xenograft growth, even when neurons were activated. Levetiracetam, an antiepileptic drug, reduced the neuronal production of miR-184-3p-enriched exosomes, inhibited GSC PMT, and increased radiosensitivity of tumors to prolong survival in xenograft mouse models. Together, these findings indicate that exosomes derived from active neurons promote GBM progression and radioresistance by inducing PMT of GSCs. SIGNIFICANCE: Active neurons secrete exosomes enriched with miR-184-3p that promote glioblastoma progression and radioresistance by driving the proneural-to-mesenchymal transition in glioma stem cells, which can be reversed by antiseizure medication levetiracetam.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , MicroRNAs , Humans , Animals , Mice , Glioblastoma/pathology , Brain Neoplasms/pathology , Levetiracetam/metabolism , Levetiracetam/therapeutic use , Neoplastic Stem Cells/pathology , Glioma/pathology , Neurons/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Cell Line, Tumor , Cell Proliferation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...