Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767623

ABSTRACT

Reaction of the cesium antimonide complex [Cs(18C6)2][SbH2] (1, 18C6 = 18-crown-6 ether) with the triamidoamine actinide separated ion pairs [An(TrenTIPS)(L)][BPh4] (TrenTIPS = {N(CH2CH2NSiiPr3)3}3-; An/L = Th/DME (2Th); U/THF (2U)) affords the triactinide undeca-antimontriide Zintl clusters [{An(TrenTIPS)}3(µ3-Sb11)] (An = Th (3Th), U (3U)) by dehydrocoupling. Clusters 3Th and 3U provide two new examples of the Sb113- Zintl trianion and are unprecedented examples of molecular Sb113- being coordinated to anything since all previous reports featured isolated Sb113- Zintl trianions in separated ion quadruple formulations with noncoordinating cations. Quantum chemical calculations describe dominant ionic An-Sb interactions in 3Th and 3U, though the data suggest that the latter exhibits slightly more covalent An-Sb linkages than the former. Complexes 3Th and 3U have been characterized by single crystal X-ray diffraction, NMR, IR, and UV/vis/NIR spectroscopies, elemental analysis, and quantum chemical calculations.

2.
Inorg Chem ; 63(21): 9588-9601, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38557081

ABSTRACT

We introduce the boryloxide ligand {(HCNDipp)2BO}- (NBODipp, Dipp = 2,6-di-isopropylphenyl) to actinide chemistry. Protonolysis of [U{N(SiMe3)2}3] with 3 equiv of NBODippH produced the uranium(III) tris(boryloxide) complex [U(NBODipp)3] (1). In contrast, treatment of UCl4 with 3 equiv of NBODippK in THF at room temperature or reflux conditions produced only [U(NBODipp)2(Cl)2(THF)2] (2) with 1 equiv of NBODippK remaining unreacted. However, refluxing the mixture of 2 and unreacted NBODippK in toluene instead of THF afforded the target complex [U(NBODipp)3(Cl)(THF)] (3). Two-electron oxidation of 1 with AdN3 (Ad = 1-adamantyl) afforded the uranium(V)-imido complex [U(NBODipp)3(NAd)] (4). The solid-state structure of 1 reveals a uranium-arene bonding motif, and structural, spectroscopic, and DFT calculations all suggest modest uranium-arene δ-back-bonding with approximately equal donation into the arene π4 and π5 δ-symmetry π* molecular orbitals. Complex 4 exhibits a short uranium(V)-imido distance, and computational modeling enabled its electronic structure to be compared to related uranium-imido and uranium-oxo complexes, revealing a substantial 5f-orbital crystal field splitting and extensive mixing of 5f |ml,ms⟩ states and mj projections. Complexes 1-4 have been variously characterized by single-crystal X-ray diffraction, 1H NMR, IR, UV/vis/NIR, and EPR spectroscopies, SQUID magnetometry, elemental analysis, and CONDON, F-shell, DFT, NLMO, and QTAIM crystal field and quantum chemical calculations.

3.
Chem Sci ; 15(10): 3767, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38455023

ABSTRACT

[This corrects the article DOI: 10.1039/D3SC05056D.].

4.
Nat Chem ; 16(5): 780-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38378948

ABSTRACT

There is continued burgeoning interest in metal-metal multiple bonding to further our understanding of chemical bonding across the periodic table. However, although polar covalent metal-metal multiple bonding is well known for the d and p blocks, it is relatively underdeveloped for actinides. Homometallic examples are found in spectroscopic or fullerene-confined species, and heterometallic variants exhibiting a polar covalent σ bond supplemented by up to two dative π bonds are more prevalent. Hence, securing polar covalent actinide double and triple metal-metal bonds under normal experimental conditions has been a fundamental target. Here we exploit the protonolysis and dehydrocoupling chemistry of the parent dihydrogen-antimonide anion, to report one-, two- and three-fold thorium-antimony bonds, thus introducing polar covalent actinide-metal multiple bonding under normal experimental conditions between some of the heaviest ions in the periodic table with little or no bulky-substituent protection at the antimony centre. This provides fundamental insights into heavy element multiple bonding, in particular the tension between orbital-energy-driven and overlap-driven covalency for the actinides in a relativistic regime.

5.
Chem Sci ; 15(1): 13-45, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131077

ABSTRACT

The coordination and organometallic chemistry of the f-elements, that is group 3, lanthanide, and actinide ions, supported by nitrogen ligands, e.g. amides, imides, and nitrides, has become well developed over many decades. In contrast, the corresponding f-element chemisty with the heavier pnictogen analogues phosphorus, arsenic, antimony, and bismuth has remained significantly underdeveloped, due largely to a lack of suitable synthetic methodologies and also the inherent hard(f-element)-soft(heavier pnictogen) acid-base mismatch, but has begun to flourish in recent years. Here, we review complexes containing chemical bonds between the f-elements and heavy pnictogens from phosphorus to bismuth that spans five decades of endeavour. We focus on complexes whose identity has been unambiguously established by structural authentication by single-crystal X-ray diffraction with respect to their synthesis, characterisation, bonding, and reactivity, in order to provide a representative overview of this burgeoning area. By highlighting that much has been achieved but that there is still much to do this review aims to inspire, focus and guide future efforts in this area.

6.
J Am Chem Soc ; 145(40): 21766-21784, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37768555

ABSTRACT

We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(µ-PH)] (3), and [{Th(TrenTIPS)}2(µ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (µ-P)3- > (═PH)2- > (µ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.

7.
Angew Chem Int Ed Engl ; 61(50): e202211627, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36254899

ABSTRACT

We report the direct synthesis of the terminal pnictidenes [An(TrenTCHS )(PnH)][M(2,2,2-cryptand)] (TrenTCHS ={N(CH2 CH2 NSiCy3 )3 }3- ; An/Pn/M=Th/P/Na 5, Th/As/K 6, U/P/Na 7, U/As/K 8) and their conversion to the pnictides [An(TrenTCHS )(PnH2 )] (An/Pn=Th/P 9, Th/As 10, U/P 11, U/As 12). Use of the super-bulky TrenTCHS ligand was essential to accessing complete families, and 6 is an unprecedented example of a terminal thorium-arsinidene complex and only the second structurally authenticated parent terminal arsinidene complex of any metal. Comparison of the terminal Th=AsH unit of 6 to the bridging ThAs(H)K linkage in structurally analogous [Th(TrenTIPS ){µ-As(H)K(15-crown-5)}] (TrenTIPS ={N(CH2 CH2 NSiPri 3 )3 }3- ) reveals a stronger Th-As bond in the former compared to the latter, and a large response overall to the nature of the Th=AsH bonding upon removal of the electrostatically-bound K-ion; the σ-bond changes little but the π-bond is significantly perturbed.

8.
Nat Commun ; 12(1): 5649, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34561448

ABSTRACT

Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.

9.
Nat Commun ; 12(1): 4832, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376682

ABSTRACT

Disproportionation, where a chemical element converts its oxidation state to two different ones, one higher and one lower, underpins the fundamental chemistry of metal ions. The overwhelming majority of uranium disproportionations involve uranium(III) and (V), with a singular example of uranium(IV) to uranium(V/III) disproportionation known, involving a nitride to imido/triflate transformation. Here, we report a conceptually opposite disproportionation of uranium(IV)-imido complexes to uranium(V)-nitride/uranium(III)-amide mixtures. This is facilitated by benzene, but not toluene, since benzene engages in a redox reaction with the uranium(III)-amide product to give uranium(IV)-amide and reduced arene. These disproportionations occur with potassium, rubidium, and cesium counter cations, but not lithium or sodium, reflecting the stability of the corresponding alkali metal-arene by-products. This reveals an exceptional level of ligand- and solvent-control over a key thermodynamic property of uranium, and is complementary to isolobal uranium(V)-oxo disproportionations, suggesting a potentially wider prevalence possibly with broad implications for the chemistry of uranium.

10.
J Am Chem Soc ; 143(14): 5343-5348, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33792307

ABSTRACT

The first isolation and structural characterization of an f-element dinitrogen complex was reported in 1988, but an f-element complex with the first heavier group 15 homologue diphosphorus has to date remained unknown. Here, we report the synthesis of a side-on bound diphosphorus complex of uranium(IV) using a 7λ3-(dimethylamino)phosphadibenzonorbornadiene-mediated P atom transfer approach. Experimental and computational characterization reveals that the diphosphorus ligand is activated to its dianionic (P2)2- form and that in-plane U-P π-bonding dominates the bonding of the U(µ-η2:η2-P2)U unit, which is supplemented by a weak U-P interaction of δ symmetry. A preliminary reactivity study demonstrates conversion of this diphosphorus complex to unprecedented uranium cyclo-P3 complexes, suggesting in situ generation of transient, reactive phosphido species.

11.
Angew Chem Int Ed Engl ; 60(3): 1197-1202, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33051949

ABSTRACT

The reduction chemistry of the newly emerging 2-phosphaethynolate (OCP)- is not well explored, and many unanswered questions remain about this ligand in this context. We report that reduction of [Th(TrenTIPS )(OCP)] (2, TrenTIPS =[N(CH2 CH2 NSiPri 3 )]3- ), with RbC8 via [2+2+1] cycloaddition, produces an unprecedented hexathorium complex [{Th(TrenTIPS )}6 (µ-OC2 P3 )2 (µ-OC2 P3 H)2 Rb4 ] (5) featuring four five-membered [C2 P3 ] phosphorus heterocycles, which can be converted to a rare oxo complex [{Th(TrenTIPS )(µ-ORb)}2 ] (6) and the known cyclometallated complex [Th{N(CH2 CH2 NSiPri 3 )2 (CH2 CH2 SiPri 2 CHMeCH2 )}] (4) by thermolysis; thereby, providing an unprecedented example of reductive cycloaddition reactivity in the chemistry of 2-phosphaethynolate. This has permitted us to isolate intermediates that might normally remain unseen. We have debunked an erroneous assumption of a concerted fragmentation process for (OCP)- , rather than cycloaddition products that then decompose with [Th(TrenTIPS )O]- essentially acting as a protecting then leaving group. In contrast, when KC8 or CsC8 were used the phosphinidiide C-H bond activation product [{Th(TrenTIPS )}Th{N(CH2 CH2 NSiPri 3 )2 [CH2 CH2 SiPri 2 CH(Me)CH2 C(O)µ-P]}] (3) and the oxo complex [{Th(TrenTIPS )(µ-OCs)}2 ] (7) were isolated.

12.
Nat Commun ; 10(1): 4203, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31519900

ABSTRACT

Although the chemistry of uranium-ligand multiple bonding is burgeoning, analogous complexes involving other actinides such as thorium remain rare and there are not yet any terminal thorium nitrides outside of cryogenic matrix isolation conditions. Here, we report evidence that reduction of a thorium-azide produces a transient Th≡N triple bond, but this activates C-H bonds to produce isolable parent imido derivatives or it can be trapped in an N-heterocycle amine. Computational studies on these thorium-nitrogen multiple bonds consistently evidences a σ > π energy ordering. This suggests pushing-from-below for thorium, where 6p-orbitals principally interact with filled f-orbitals raising the σ-bond energy. Previously this was dismissed for thorium, being the preserve of uranium-nitrides or the uranyl dication. Recognising that pushing-from-below perhaps occurs with thorium as well as uranium, and with imido ligands as well as nitrides, suggests this phenomenon may be more widespread than previously thought.

13.
Chem Sci ; 10(13): 3738-3745, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-30996964

ABSTRACT

Molecular uranium-nitrides are now well known, but there are no isolable molecular thorium-nitrides outside of cryogenic matrix isolation experiments. We report that treatment of [M(TrenDMBS)(I)] (M = U, 1; Th, 2; TrenDMBS = {N(CH2CH2NSiMe2Bu t )3}3-) with NaN3 or KN3, respectively, affords very rare examples of actinide molecular square and triangle complexes [{M(TrenDMBS)(µ-N3)} n ] (M = U, n = 4, 3; Th, n = 3, 4). Chemical reduction of 3 produces [{U(TrenDMBS)}2(µ-N)][K(THF)6] (5) and [{U(TrenDMBS)}2(µ-N)] (6), whereas photolysis produces exclusively 6. Complexes 5 and 6 can be reversibly inter-converted by oxidation and reduction, respectively, showing that these UNU cores are robust with no evidence for any C-H bond activations being observed. In contrast, reductions of 4 in arene or ethereal solvents gives [{Th(TrenDMBS)}2(µ-NH)] (7) or [{Th(TrenDMBS)}{Th(N[CH2CH2NSiMe2Bu t ]2CH2CH2NSi[µ-CH2]MeBu t )}(µ-NH)][K(DME)4] (8), respectively, providing evidence unprecedented outside of matrix isolation for a transient dithorium-nitride. This suggests that thorium-nitrides are intrinsically much more reactive than uranium-nitrides, since they consistently activate C-H bonds to form rare examples of Th-N(H)-Th linkages with alkyl by-products. The conversion here of a bridging thorium(iv)-nitride to imido-alkyl combination by 1,2-addition parallels the reactivity of transient terminal uranium(iv)-nitrides, but contrasts to terminal uranium(vi)-nitrides that produce alkyl-amides by 1,1-insertion, suggesting a systematic general pattern of C-H activation chemistry for metal(iv)- vs. metal(vi)-nitrides. Surprisingly, computational studies reveal a σ > π energy ordering for all these bridging nitride bonds, a phenomenon for actinides only observed before in terminal uranium nitrides and uranyl with very short U-N or U-O distances.

14.
Inorg Chem ; 56(14): 8278-8286, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28661656

ABSTRACT

The reactions of [Co(PMe3)4] with the bulky organic azides, DippN3 and DmpN3 [Dipp, 2,6-diisopropylphenyl; Dmp, 2,6-di(2',4',6'-trimethylphenyl)phenyl], afforded the cobalt(II) terminal imido complexes [(Me3P)3Co(NAr)] (Ar = Dipp, 1; Dmp, 2). The cobalt imido complexes in their solid states show trigonal pyramidal coordination geometry and long Co-N(imido) separations (ca. 1.71 Å). Spectroscopic characterization and theoretical studies indicated their low-spin cobalt(II) nature. Reactivity studies on 1 revealed its nitrene-transfer reactions with PMe3 and CO, the imido/oxo and imido/sulfido exchange reactions with PhCHO and CS2, and the single-electron oxidation reaction by ferrocenium cation to form cobalt(III) imide.

15.
J Am Chem Soc ; 139(1): 373-380, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27936686

ABSTRACT

The pursuit of single-molecule magnets (SMMs) with better performance urges new molecular design that can endow SMMs larger magnetic anisotropy. Here we report that two-coordinate cobalt imido complexes featuring highly covalent Co═N cores exhibit slow relaxation of magnetization under zero direct-current field with a high effective relaxation barrier up to 413 cm-1, a new record for transition metal based SMMs. Two theoretical models were carried out to investigate the anisotropy of these complexes: single-ion model and Co-N coupling model. The former indicates that the pseudo linear ligand field helps to preserve the first-order orbital momentum, while the latter suggests that the strong ferromagnetic interaction between Co and N makes the [CoN]+ fragment a pseudo single paramagnetic ion, and that the excellent performance of these cobalt imido SMMs is attributed to the inherent large magnetic anisotropy of the [CoN]+ core with |MJ = ± 7/2⟩ ground Kramers doublet.

16.
Angew Chem Int Ed Engl ; 54(43): 12640-4, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26332532

ABSTRACT

The synthesis, structural characterization, and reactivity of the first two-coordinate cobalt complex featuring a metal-element multiple bond [(IPr)Co(NDmp)] (4; IPr=1,3-bis(2',6'-diisopropylphenyl)imidazole-2-ylidene; Dmp=2,6-dimesitylphenyl) is reported. Complex 4 was prepared from the reaction of [(IPr)Co(η(2) -vtms)2 ] (vtms=vinyltrimethylsilane) with DmpN3 . An X-ray diffraction study revealed its linear C-Co-N core and a short Co-N distance (1.691(6) Å). Spectroscopic characterization and calculation studies indicated the high-spin nature of 4 and the multiple-bond character of the Co-N bond. Complex 4 effected group-transfer reactions to CO and ethylene to form isocyanide and imine, respectively. It also facilitated E-H (E=C, Si) σ-bond activation of terminal alkyne and hydrosilanes to produce the corresponding cobalt(II) alkynyl and cobalt(II) hydride complexes as 1,2-addition products.

17.
Inorg Chem ; 54(17): 8808-16, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26273996

ABSTRACT

The use of the N-heterocyclic carbene (NHC) ligands 1,3-bis(2',6'-diethylphenyl)-4,5-(CH2)4-imidazol-2-ylidene (cyIDep), 1,3-bis(2',6'-diethylphenyl)-imidazolin-2-ylidene (sIDep), and its N-mesityl analogue sIMes enables the preparation of the two-coordinate homoleptic iron(I)-NHC complexes [(cyIDep)2Fe][BAr(F)4] (3, Ar(F) denoted for 3,5-di(trifluoromethyl)phenyl) and [(sIDep)2Fe][BAr(F)4] (4) and the T-shaped iron(I)-NHC complex [(sIMes)2Fe(THF)][BPh4] (5, THF = tetrahydrofuran). Complexes 3-5 were prepared via the sequential protocol of control reduction of iron(II) dihalides by KC8 in the presence of the corresponding NHC ligands followed by halide-abstraction with NaBAr4. Spectroscopic characterization, including single-crystal X-ray diffraction studies and (57)Fe Mössbauer spectroscopy, in combination with density functional theory calculations, suggest their high-spin nature. Solution property study (absorption spectroscopy and cyclic voltammetry) indicates that 3 and 5 keep their corresponding two- and three-coordinate nature in THF solution, and 4 might reversibly coordinate a THF molecule to form, presumably, the T-shaped species [(sIDep)2Fe(THF)][BAr(F)4]. The isolation of 3 and 4 demonstrates the accessibility of homoleptic two-coordinate iron(I)-NHC complexes.


Subject(s)
Heterocyclic Compounds/chemistry , Iron Compounds/chemistry , Iron Compounds/chemical synthesis , Methane/analogs & derivatives , Ligands , Methane/chemistry , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...