Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700507

ABSTRACT

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4)∙4H2O (H2quinha = quinaldichydroxamic acid, HClsal = 5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4)·3H2O (HClsaldt = 4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S = 0 to high-spin S = 1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

2.
Bioorg Med Chem ; 107: 117760, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38762978

ABSTRACT

Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.

3.
Bioorg Chem ; 147: 107356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604021

ABSTRACT

Developing "turn on" fluorescent probes was desirable for the detection of the effective anticoagulant agent heparin in clinical applications. Through combining the aggregation induced emission (AIE) fluorogen tetraphenylethene (TPE) and heparin specific binding peptide AG73, the promising "turn on" fluorescent probe TPE-1 has been developed. Nevertheless, although TPE-1 could achieve the sensitive and selective detection of heparin, the low proteolytic stability and undesirable poor solubility may limit its widespread applications. In this study, seven TPE-1 derived fluorescent probes were rationally designed, efficiently synthesized and evaluated. The stability and water solubility were systematically estimated. Especially, to achieve real-time monitoring of proteolytic stability, the novel Abz/Dnp-based "turn on" probes that employ the internally quenched fluorescent (IQF) mechanism were designed and synthesized. Moreover, the detection ability of synthetic fluorescent probes for heparin were systematically evaluated. Importantly, the performance of d-type peptide fluorescent probe XH-6 indicated that d-type amino acid substitutions could significantly improve the proteolytic stability without compromising its ability of heparin sensing, and attaching solubilizing tag 2-(2-aminoethoxy) ethoxy) acid (AEEA) could greatly enhance the solubility. Collectively, this study not only established practical strategies to improve both the water solubility and proteolytic stability of "turn on" fluorescent probes for heparin sensing, but also provided valuable references for the subsequent development of enzymatic hydrolysis-resistant d-type peptides based fluorescent probes.


Subject(s)
Fluorescent Dyes , Heparin , Peptides , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Heparin/analysis , Heparin/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Molecular Structure , Humans , Spectrometry, Fluorescence
4.
Phytomedicine ; 128: 155505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547616

ABSTRACT

BACKGROUND: Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE: Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS: A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS: PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION: PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.


Subject(s)
Lipid Metabolism , Non-alcoholic Fatty Liver Disease , PCSK9 Inhibitors , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Lipid Metabolism/drug effects , Animals , Proprotein Convertase 9/metabolism , Fatty Liver, Alcoholic/drug therapy , Liver/drug effects , Fatty Liver/drug therapy
5.
J Med Chem ; 67(5): 3885-3908, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38278140

ABSTRACT

Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/pharmacology , Oligopeptides/pharmacology , Peptides/pharmacology , Apoptosis , Peptide Hydrolases , Cell Line, Tumor
6.
Equine Vet J ; 56(3): 562-572, 2024 May.
Article in English | MEDLINE | ID: mdl-37337455

ABSTRACT

BACKGROUND: Phenylbutazone (PBZ) is the most commonly used drug to treat symptoms of lameness in horses; however, it is associated with adverse effects such as gastric ulcer syndrome (EGUS). Interestingly, many practitioners prescribe omeprazole (OME) concurrently with PBZ to prevent the development of EGUS. However, the efficacy and safety of this practice in Mongolian horses with chronic lameness remain unknown. OBJECTIVES: To evaluate the clinical effects of a combination of PBZ and OME on chronic lameness in Mongolian horses. STUDY DESIGN: Randomised block experimental design. METHODS: Eighteen Mongolian horses with lameness score was ≥3 points, were divided into three treatment groups, with six horses in each group: placebo (CON), PBZ (4.4 mg/kg PO q. 24 h), or PBZ plus OME (4 mg/kg PO q. 24 h; PBZ + OME) in a randomised block design based on the initial lameness score. The horses were treated for 15 days. During this period, weekly gastroscopy, and physiological and biochemical tests were performed. RESULTS: Both PBZ (median 1.0, interquartile range [IQR]: 0.8-1.3; p = 0.01) and PBZ + OME (median 1.0, IQR: 1.0-1.0; p = 0.01) significantly decreased the lameness score compared with before administration. In addition, PBZ significantly increased the equine glandular gastric disease (EGGD) score (3.0 ± 0.6, p < 0.001), GT-17 content (293.4 ± 21.8 pg/mL, p < 0.001), and pepsinogen-1 (PG1) content (295.3 ± 38.3 ng/mL, p < 0.001) compared with CON or PBZ + OME. However, it significantly reduced the total protein (53.6 ± 1.5 g/L, p < 0.05) and albumin (25.5 ± 1.8 g/L, p < 0.05) contents. Nevertheless, compared with PBZ, PBZ + OME significantly decreased the EGGD score (0.3 ± 0.5, p < 0.001) and significantly increased the gastric fluid pH (7.3 ± 0.5, p < 0.001), total protein content (62.5 ± 4.6 g/L, p = 0.009), and albumin content (29.4 ± 1.1 g/L, p = 0.004). Meanwhile, they significantly diminished the gastrin 17 (GT-17) (162.0 ± 21.0 pg/mL, p < 0.001) and PG1 (182.4 ± 22.5 ng/mL, p < 0.001) contents. MAIN LIMITATIONS: Individual differences in horses were larger, but the sample size was small. There was larger interval between observations for each index. CONCLUSIONS: Compared with PBZ alone, PBZ + OME had no therapeutic effect on chronic lameness; however, it reduced the occurrence of EGGD in Mongolian horses. Horses may be protected against chronic lameness and PBZ-induced EGGD by increasing the pH value, decreasing serum PG1 and GT-17 content, and preventing the reduction of myeloperoxidase content.


Subject(s)
Horse Diseases , Stomach Ulcer , Horses , Animals , Anti-Inflammatory Agents, Non-Steroidal , Omeprazole , Lameness, Animal/drug therapy , Lameness, Animal/prevention & control , Phenylbutazone/therapeutic use , Phenylbutazone/adverse effects , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Stomach Ulcer/veterinary , Horse Diseases/drug therapy , Horse Diseases/prevention & control , Horse Diseases/chemically induced , Albumins/adverse effects
7.
Haematologica ; 109(4): 1053-1068, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37794799

ABSTRACT

6-mercaptopurine (6-MP) serves as the backbone in the maintenance regimens of acute lymphoblastic leukemia (ALL). We aimed to evaluate the influence of NUDT15 gene polymorphism on the risk of myelosupression, hepatotoxicity and interruption of 6-MP, as well as treatment efficacy and dose of 6-MP in ALL patients. A total of 24 studies with 3,374 patients were included in this meta-analysis. We found 9-fold higher risk of 6-MP induced leukopenia (odds ratio [OR] =9.00, 95% confidence interval [CI]: 3.73-21.74) and 2.5-fold higher risk of 6-MP-induced neutropenia (OR=2.52, 95% CI: 1.72-3.69) for NUDT15 c.415C>T variant carriers in the dominant model. Moreover, we found that the dose intensity of 6-MP in ALL patients with one NUDT15 c.415C>T variant alleles (CT) was 19% less than that in wild-type patients (CC) (mean differences: 19.43%, 95% CI: -25.36 to -13.51). The tolerable dose intensity of 6-MP in NUDT15 c.415C>T homozygote variant (TT) and heterozygote variant (CT) carriers was 49% and 15% less than that in wild-type patients, respectively. The NUDT15 c.415C>T variant group (CT+TT) had seven times (OR=6.98, 95% CI: 2.83-17.22) higher risk of developing 6-MP intolerance than the CC group. However, NUDT15 c.415C>T polymorphism did not appear significantly associated with hepatotoxicity, treatment interruption or relapse incidence. We concluded that NUDT15 c.415C>T was a good predictor for 6-MP-induced myelosuppression in ALL patients. The dose intensity of 6-MP in ALL patients with NUDT15 c.415C>T variants was significantly lower than that in wild-type patients. This research provided a basis for further investigation into relations between NUDT15 gene and adverse reaction, treatment efficacy and dose intensity of 6-MP.


Subject(s)
Chemical and Drug Induced Liver Injury , Neutropenia , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mercaptopurine/adverse effects , Pyrophosphatases/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Polymorphism, Genetic , Neutropenia/genetics , Treatment Outcome , Chemical and Drug Induced Liver Injury/drug therapy
8.
SAGE Open Med ; 11: 20503121231205710, 2023.
Article in English | MEDLINE | ID: mdl-37915840

ABSTRACT

Backgrounds: Papillary thyroid cancer is the most common pathological type of thyroid cancer. miR-96-5p, a member of the miR-183 family, constitute a polycistronic miRNA cluster. In breast cancer, miR-96-5p promotes cell invasion, migration, and proliferation in vitro by inhibiting PTPN9. Moreover, miR-96-5p was reported to function as an oncogene in many cancers. However, whether miR-96-5p is involved in the development of papillary thyroid cancers and its potential mechanism is still unknown. The present study aims to explore the relationship between miR-96-5p and GPC3 expression in the development of papillary thyroid cancers. Methods: Transcriptomic sequencing was carried out using six pairs of papillary thyroid cancer and adjacent normal tissues. Quantitative real-time polymerase chain reaction (PCR) experiments were performed to examine the expression of genes. Results: In total, there were 1588 up-regulated and 1803 down-regulated differentially expressed genes between papillary thyroid cancer and normal tissues. Gene ontology and Kyoto encyclopedia of genes and genomes analysis revealed that extracellular matrix structure and proteoglycans were mainly involved in papillary thyroid cancer. Among the cluster of proteoglycans, GPC3 was significantly down-regulated in papillary thyroid cancer and is a target of miR-96. Conclusion: miR-96-5p participates in the development of papillary thyroid cancer by regulating the expression of GPC3. Thus, targeting miR-96-5p may be a potential therapeutic approach for preventing and treating papillary thyroid cancer.

9.
Front Med (Lausanne) ; 10: 1232334, 2023.
Article in English | MEDLINE | ID: mdl-37841014

ABSTRACT

Background: Elderly patients frequently experience a high incidence of adverse drug events (ADEs) due to the coexistence of multiple diseases, the combination of various medications, poor medication compliance, and other factors. Global Trigger Tool (GTT) is a new method for identifying ADEs, introducing the concept of a trigger, that is, clues including abnormal laboratory values, reversal drugs, and clinical symptoms that may suggest ADEs, and specifically locating information related to ADEs in the medical record to identify ADEs. The aim of this study was to establish a GTT-based trigger tool for adverse medication events in elderly patients and to investigate the risk variables associated with such events. Methods: The triggers were identified by reviewing the frequency of ADEs in elderly patients in Sichuan, China, retrieving relevant literature, and consulting experts. A retrospective analysis was carried out to identify adverse medication occurrences among 480 elderly inpatients in Sichuan People's Hospital. Results: A total of 56 ADEs were detected in 51 patients (10.62%), 13.04 per 1,000 patient days, and 11.67 per 100 admissions. The overall positive predictive value (PPV) of the triggers was 23.84, and 94.64% of ADEs caused temporary injury. Gastrointestinal system injury (27.87%) and metabolic and nutritional disorders (24.53%) were the primary organ-systems affected by ADEs. The majority of ADEs were caused by drugs used to treat cardiovascular diseases. 71.43% of ADE occurred within 2 days of administration and the risk factor analysis of ADE revealed that the number of medicines had a significant correlation. Conclusion: This study demonstrated GTT's value as a tool for ADEs detection in elderly inpatients in China. It enhances the level of medication management and comprehensively reflects the situation of ADE of the elderly.

10.
J Biomed Opt ; 28(10): 102911, 2023 10.
Article in English | MEDLINE | ID: mdl-37867633

ABSTRACT

Significance: Mueller matrix (MM) microscopy has proven to be a powerful tool for probing microstructural characteristics of biological samples down to subwavelength scale. However, in clinical practice, doctors usually rely on bright-field microscopy images of stained tissue slides to identify characteristic features of specific diseases and make accurate diagnosis. Cross-modality translation based on polarization imaging helps to improve the efficiency and stability in analyzing sample properties from different modalities for pathologists. Aim: In this work, we propose a computational image translation technique based on deep learning to enable bright-field microscopy contrast using snapshot Stokes images of stained pathological tissue slides. Taking Stokes images as input instead of MM images allows the translated bright-field images to be unaffected by variations of light source and samples. Approach: We adopted CycleGAN as the translation model to avoid requirements on co-registered image pairs in the training. This method can generate images that are equivalent to the bright-field images with different staining styles on the same region. Results: Pathological slices of liver and breast tissues with hematoxylin and eosin staining and lung tissues with two types of immunohistochemistry staining, i.e., thyroid transcription factor-1 and Ki-67, were used to demonstrate the effectiveness of our method. The output results were evaluated by four image quality assessment methods. Conclusions: By comparing the cross-modality translation performance with MM images, we found that the Stokes images, with the advantages of faster acquisition and independence from light intensity and image registration, can be well translated to bright-field images.


Subject(s)
Deep Learning , Microscopy , Lung , Staining and Labeling , Liver/diagnostic imaging , Image Processing, Computer-Assisted/methods
11.
BMC Geriatr ; 23(1): 603, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37759185

ABSTRACT

BACKGROUNDS: Gait disorder is associated with cognitive functional impairment, and this disturbance is more pronouncedly when performing additional cognitive tasks. Our study aimed to characterize gait disorders in mild cognitive impairment (MCI) under three dual tasks and determine the association between gait performance and cognitive function. METHODS: A total of 260 participants were enrolled in this cross-sectional study and divided into MCI and cognitively normal control. Spatiotemporal and kinematic gait parameters (31 items) in single task and three dual tasks (serial 100-7, naming animals and words recall) were measured using a wearable sensor. Baseline characteristics of the two groups were balanced using propensity score matching. Important gait features were filtered using random forest method and LASSO regression and further described using logistic analysis. RESULTS: After matching, 106 participants with MCI and 106 normal controls were recruited. Top 5 gait features in random forest and 4 ~ 6 important features in LASSO regression were selected. Robust variables associating with cognitive function were temporal gait parameters. Participants with MCI exhibited decreased swing time and terminal swing, increased mid stance and variability of stride length compared with normal control. Subjects walked slower when performing an extra dual cognitive task. In the three dual tasks, words recall test exhibited more pronounced impact on gait regularity, velocity, and dual task cost than the other two cognitive tests. CONCLUSION: Gait assessment under dual task conditions, particularly in words recall test, using portable sensors could be useful as a complementary strategy for early detection of MCI.


Subject(s)
Cognitive Dysfunction , Humans , Aged , Cross-Sectional Studies , Cognitive Dysfunction/psychology , Gait , Walking , Cognition , Neuropsychological Tests
12.
Bioorg Chem ; 138: 106674, 2023 09.
Article in English | MEDLINE | ID: mdl-37331169

ABSTRACT

Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.


Subject(s)
Neoplasms , Nitrogen Mustard Compounds , Animals , Mice , Chlorambucil/pharmacology , DNA/metabolism , Nitrogen , Nitrogen Mustard Compounds/pharmacology , Peptides/pharmacology
13.
Adv Mater ; 35(38): e2303388, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37384857

ABSTRACT

Microneedles (MNs) have become versatile platforms for minimally invasive transdermal drug delivery devices. However, there are concerns about MN-induced skin infections with long-term transdermal administration. Using the Langmuir-Blodgett (LB) technique, a simple method for depositing antibacterial nanoparticles of various shapes, sizes, and compositions onto MNs is developed. This strategy has merits over conventional dip coating techniques, including controlled coating layers, uniform and high coverage, and a straightforward fabrication process. This provides MNs with a fast-acting and long-lasting antibacterial effect. This study demonstrates that antibacterial MNs achieve superior bacterial elimination in vitro and in vivo without sacrificing payload capacity, drug release, or mechanical strength. It is believed that such a functional nanoparticle coating technique offers a platform for the expansion of MNs function, especially in long-term transdermal drug delivery fields.


Subject(s)
Drug Delivery Systems , Needles , Administration, Cutaneous , Drug Delivery Systems/methods , Skin , Anti-Bacterial Agents/pharmacology
14.
Front Aging Neurosci ; 15: 1068708, 2023.
Article in English | MEDLINE | ID: mdl-36861124

ABSTRACT

Objectives: Olfactory disorder is one of the sensory features that reflects a decline in cognitive function. However, olfactory changes and the discernibility of smell testing in the aging population have yet to be fully elucidated. Therefore, this study aimed to examine the effectiveness of the Chinese Smell Identification Test (CSIT) in distinguishing individuals with cognitive decline from those with normal aging and to determine whether the patients with MCI and AD show changes in their olfactory identification abilities. Methods: This cross-sectional study included eligible participants aged over 50 years between October 2019 and December 2021. The participants were divided into three groups: individuals with mild cognitive impairment (MCI), individuals with Alzheimer's disease (AD), and cognitively normal controls (NCs). All participants were assessed using neuropsychiatric scales, the Activity of Daily Living scale, and the 16-odor cognitive state test (CSIT) test. The test scores and the severity of olfactory impairment were also recorded for each participant. Results: In total, 366 eligible participants were recruited, including 188 participants with MCI, 42 patients with AD, and 136 NCs. Patients with MCI achieved a mean CSIT score of 13.06 ± 2.05, while patients with AD achieved a mean score of 11.38 ± 3.25. These scores were significantly lower than those of the NC group (14.6 ± 1.57; P < 0.001). An analysis showed that 19.9% of NCs exhibited mild olfactory impairment, while 52.7% of patients with MCI and 69% of patients with AD exhibited mild to severe olfactory impairment. The CSIT score was positively correlated with the MoCA and MMSE scores. The CIST score and the severity of olfactory impairment were identified as robust indicators for MCI and AD, even after adjusting for age, gender, and level of education. Age and educational level were identified as two important confounding factors that influence cognitive function. However, no significant interactive effects were observed between these confounders and CIST scores in determining the risk of MCI. The area under the ROC curve (AUC) generated from the ROC analysis was 0.738 and 0.813 in distinguishing patients with MCI and patients with AD from NCs based on the CIST scores, respectively. The optimal cutoff for distinguishing MCI from NCs was 13, and for distinguishing AD from NCs was 11. The AUC for distinguishing AD from MCI was 0.62. Conclusions: The olfactory identification function is frequently affected in patients with MCI and patients with AD. CSIT is a beneficial tool for the early screening of cognitive impairment among elderly patients with cognitive or memory issues.

15.
Bioorg Chem ; 134: 106451, 2023 05.
Article in English | MEDLINE | ID: mdl-36907048

ABSTRACT

Cytotoxic peptides derived from spider venoms have been considered as promising candidates for anticancer treatment. The novel cell penetrating peptide LVTX-8, which is a 25-residue amphipathic α-helical peptide isolated from spider Lycosa vittata, exhibited potent cytotoxicity and is a potential precursor for further anticancer drug development. Nevertheless, LVTX-8 may be easily degraded by multiple proteases, inducing the proteolytic stability problem and short half-life. In this study, ten LVTX-8-based analogs were rationally designed and the efficient manual synthetic method was established by the DIC/Oxyma based condensation system. The cytotoxicity of synthetic peptides was systematically evaluated against seven cancer cell lines. Seven of the derived peptides exhibited high cytotoxicity towards tested cancer in vitro, which was better than or comparable to that of natural LVTX-8. In particular, both N-acetyl and C-hydrazide modified LVTX-8 (825) and the conjugate methotrexate (MTX)-GFLG-LVTX-8 (827) possessed more durable anticancer efficiency, higher proteolytic stability, as well as lower hemolysis. Finally, we confirmed that LVTX-8 could disrupt the integrity of cell membrane, target the mitochondria and reduce the mitochondrial membrane potential to induce the cell death. Taken together, the structural modifications were conducted on LVTX-8 for the first time and the stability significantly improved derivatives 825 and 827 may provide useful references for the modifications of cytotoxic peptides.


Subject(s)
Antineoplastic Agents , Cell-Penetrating Peptides , Neoplasms , Spider Venoms , Humans , Spider Venoms/pharmacology , Spider Venoms/chemistry , Spider Venoms/metabolism , Antineoplastic Agents/pharmacology , Methotrexate/chemistry , Cell-Penetrating Peptides/chemistry
16.
Diseases ; 11(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36648874

ABSTRACT

BACKGROUND: A recent study reported that papillary thyroid carcinoma (PTC) was associated with increased adrenergic nerve density. Meanwhile, emerging evidence suggested that tumor-innervating nerves might play a role in shaping the tumor microenvironment. We aimed to explore the potential interaction between neuronal markers and tumor microenvironmental signatures through a transcriptomic approach. METHODS: mRNA sequencing was conducted using five pairs of PTC and adjacent normal tissues. The Gene Set Variation Analysis (GSVA) was performed to calculate enrichment scores of gene sets related to tumor-infiltrating immune cells and the tumor microenvironment. The potential interaction was tested using the expression levels of a series of neuronal markers and gene set enrichment scores. RESULTS: PTC tissues were associated with increased enrichment scores of CD8 T cells, cancer-associated fibroblasts, mast cells, and checkpoint molecules. The neuronal marker for cholinergic neurons was positively correlated with CD8 T cell activation, while markers for serotonergic and dopaminergic neurons showed an inverse correlation. CONCLUSION: Distinct neuronal markers exerted different correlations with tumor microenvironmental signatures. Tumor-innervating nerves might play a role in the formation of the PTC microenvironment.

17.
Mol Divers ; 27(5): 2239-2255, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36331785

ABSTRACT

There has been considerable interest in transforming peptides into small molecules as peptide-based molecules often present poorer bioavailability and lower metabolic stability. Our studies looked into building machine learning (ML) models to investigate if ML is able to identify the 'bioactive' features of peptides and use the features to accurately discriminate between binding and non-binding small molecules. The ghrelin receptor (GR), a receptor that is implicated in various diseases, was used as an example to demonstrate whether ML models derived from a peptide library can be used to predict small molecule binders. ML models based on three different algorithms, namely random forest, support vector machine, and extreme gradient boosting, were built based on a carefully curated dataset of peptide/peptidomimetic and small molecule GR ligands. The results indicated that ML models trained with a dataset exclusively composed of peptides/peptidomimetics provide limited predictive power for small molecules, but that ML models trained with a diverse dataset composed of an array of both peptides/peptidomimetics and small molecules displayed exceptional results in terms of accuracy and false rates. The diversified models can accurately differentiate the binding small molecules from non-binding small molecules using an external validation set with new small molecules that we synthesized previously. Structural features that are the most critical contributors to binding activity were extracted and are remarkably consistent with the crystallography and mutagenesis studies.


Subject(s)
Peptidomimetics , Peptidomimetics/chemistry , Receptors, Ghrelin , Ligands , Peptides/chemistry , Machine Learning , Support Vector Machine
18.
Acta Pharmacol Sin ; 44(1): 201-210, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35794372

ABSTRACT

The use of oncolytic peptides with activity against a wide range of cancer entities as a new and promising cancer therapeutic strategy has drawn increasing attention. The oncolytic peptide LTX-315 derived from bovine lactoferricin (LfcinB) was found to be highly effective against suspension cancer cells, but not adherent cancer cells. In this study, we tactically fused LTX-315 with rhodamine B through a hybridization strategy to design and synthesize a series of nucleus-targeting hybrid peptides and evaluated their activity against adherent cancer cells. Thus, four hybrid peptides, NTP-212, NTP-217, NTP-223 and NTP-385, were synthesized. These hybrid peptides enhanced the anticancer activity of LTX-315 in a panel of adherent cancer cell lines by 2.4- to 37.5-fold. In model mice bearing B16-F10 melanoma xenografts, injection of NTP-385 (0.5 mg per mouse for 3 consecutive days) induced almost complete regression of melanoma, prolonged the median survival time and increased the overall survival. Notably, the administered dose of NTP-385 was only half the effective dose of LTX-315. We further revealed that unlike LTX-315, which targets the mitochondria, NTP-385 disrupted the nuclear membrane and accumulated in the nucleus, resulting in the transfer of a substantial amount of reactive oxygen species (ROS) from the cytoplasm to the nucleus through the fragmented nuclear membrane. This ultimately led to DNA double-strand break (DSB)-mediated intrinsic apoptosis. In conclusion, this study demonstrates that hybrid peptides obtained from the fusion of LTX-315 and rhodamine B enhance anti-adherent cancer cell activity by targeting the nucleus and triggering DNA DSB-mediated intrinsic apoptosis. This study also provides an advantageous reference for nucleus-targeting peptide modification.


Subject(s)
Melanoma , Peptides , Humans , Animals , Mice , Cell Line, Tumor , Peptides/pharmacology , Peptides/therapeutic use , Apoptosis , DNA
19.
Minerva Pediatr (Torino) ; 75(4): 598-603, 2023 08.
Article in English | MEDLINE | ID: mdl-31264392

ABSTRACT

INTRODUCTION: The aim of this study was to evaluate whether sepsis and bronchopulmonary dysplasia (BPD) are risk factors for parenteral nutrition-associated cholestasis (PNAC) and to provide suggestions for the prevention of PNAC in infants. EVIDENCE ACQUISITION: Electronic databases (PubMed, EBSCO, Elsevier, Springer, Wiley, and Cochrane) were searched for studies published up to October 22, 2017. Associations between sepsis, BPD and PNAC were assessed using odds ratios (ORs) and 95% confidence intervals (CIs). Heterogeneity was assessed using the I2 statistic, and subgroup analyses were performed. EVIDENCE SYNTHESIS: Nine studies incorporating a total of 2248 cases were included in the meta-analysis. Sepsis was significantly associated with PNAC (pooled OR=2.04; 95% CI: 1.23-2.85), but BPD was not (pooled OR=1.22; 95% CI: 0.65-1.78). In a subgroup analysis, BPD was not associated with PNAC in either the non-Asian group (pooled OR=1.38; 95% CI: 0.58-2.18) or the Asian group (pooled OR=1.05; 95% CI: 0.26-1.84). CONCLUSIONS: Sepsis, but not BPD, was a risk factor for PNAC in this meta-analysis. Further studies are needed to confirm the findings.


Subject(s)
Bronchopulmonary Dysplasia , Cholestasis , Sepsis , Infant, Newborn , Infant , Humans , Retrospective Studies , Bronchopulmonary Dysplasia/complications , Parenteral Nutrition/adverse effects , Cholestasis/complications , Cholestasis/prevention & control , Sepsis/complications , Risk Factors
20.
IEEE Trans Med Imaging ; 42(1): 304-316, 2023 01.
Article in English | MEDLINE | ID: mdl-36155433

ABSTRACT

Polarization imaging is sensitive to sub-wavelength microstructures of various cancer tissues, providing abundant optical characteristics and microstructure information of complex pathological specimens. However, how to reasonably utilize polarization information to strengthen pathological diagnosis ability remains a challenging issue. In order to take full advantage of pathological image information and polarization features of samples, we propose a dual polarization modality fusion network (DPMFNet), which consists of a multi-stream CNN structure and a switched attention fusion module for complementarily aggregating the features from different modality images. Our proposed switched attention mechanism could obtain the joint feature embeddings by switching the attention map of different modality images to improve their semantic relatedness. By including a dual-polarization contrastive training scheme, our method can synthesize and align the interaction and representation of two polarization features. Experimental evaluations on three cancer datasets show the superiority of our method in assisting pathological diagnosis, especially in small datasets and low imaging resolution cases. Grad-CAM visualizes the important regions of the pathological images and the polarization images, indicating that the two modalities play different roles and allow us to give insightful corresponding explanations and analysis on cancer diagnosis conducted by the DPMFNet. This technique has potential to facilitate the performance of pathological aided diagnosis and broaden the current digital pathology boundary based on pathological image features.


Subject(s)
Image Processing, Computer-Assisted , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...