Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Science ; 385(6714): 1230-1236, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39265020

ABSTRACT

Self-discharge and chemically induced mechanical effects degrade calendar and cycle life in intercalation-based electrochromic and electrochemical energy storage devices. In rechargeable lithium-ion batteries, self-discharge in cathodes causes voltage and capacity loss over time. The prevailing self-discharge model centers on the diffusion of lithium ions from the electrolyte into the cathode. We demonstrate an alternative pathway, where hydrogenation of layered transition metal oxide cathodes induces self-discharge through hydrogen transfer from carbonate solvents to delithiated oxides. In self-discharged cathodes, we further observe opposing proton and lithium ion concentration gradients, which contribute to chemical and structural heterogeneities within delithiated cathodes, accelerating degradation. Hydrogenation occurring in delithiated cathodes may affect the chemo-mechanical coupling of layered cathodes as well as the calendar life of lithium-ion batteries.

2.
Adv Mater ; : e2402484, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39219216

ABSTRACT

Topotactic reduction is critical to a wealth of phase transitions of current interest, including synthesis of the superconducting nickelate Nd0.8Sr0.2NiO2, reduced from the initial Nd0.8Sr0.2NiO3/SrTiO3 heterostructure. Due to the highly sensitive and often damaging nature of the topotactic reduction, however, only a handful of research groups have been able to reproduce the superconductivity results. A series of in situ synchrotron-based investigations reveal that this is due to the necessary formation of an initial, ultrathin layer at the Nd0.8Sr0.2NiO3 surface that helps to mediate the introduction of hydrogen into the film such that apical oxygens are first removed from the Nd0.8Sr0.2NiO3 / SrTiO3 (001) interface and delivered into the reducing environment. This allows the square-planar / perovskite interface to stabilize and propagate from the bottom to the top of the film without the formation of interphase defects. Importantly, neither geometric rotations in the square planar structure nor significant incorporation of hydrogen within the films is detected, obviating its need for superconductivity. These findings unveil the structural basis underlying the transformation pathway and provide important guidance on achieving the superconducting phase in reduced nickelate systems.

3.
Small ; : e2402717, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148218

ABSTRACT

Investigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-Fe2O3) and subsequent crystal growth. Specifically, it is observed that akaganéite nanorods with a diameter of ∼50 nm transformed into hollow polycrystalline maghemite nanorods, which demonstrated remarkable stability without arresting crystal growth under continuous heating. In contrast, smaller akaganéite nanoneedles or nanowires with a diameter ranging from 20 to 8 nm displayed a propensity for forming single-crystal nanoneedles or nanowires through phase transformation and densification. By manipulating the size of the precursors, a straightforward method is developed for the synthesis of single-crystal and polycrystalline maghemite nanowires through solid-phase transformation. These significant findings provide new insights into the size-dependent structural evolution and phase transformation of iron oxides at the nanoscale.

4.
Int J Neurosci ; : 1-8, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38193210

ABSTRACT

This retrospective study analyzed the efficacy of combined antiplatelet therapy with Argatroban in treating acute ischemic stroke (AIS) and its impact on patients' coagulation and neurological functions. Clinical data of 113 AIS patients admitted between January 2021 and January 2023 were retrospectively analyzed. Patients were divided into control (n = 56) and observation (n = 57) groups based on treatment interventions. The control group patients were treated with antiplatelet drugs, while the observation group patients received combination therapy with apatinib on the basis of the control group treatment. Compared to the control group, the observation group demonstrated higher clinical efficacy, improved coagulation parameters, reduced stroke severity (measured by NIHSS), enhanced daily living abilities (BI scores), and lowered inflammatory and neural injury markers post-treatment. Adverse reaction incidence was similar between groups. Combining Argatroban with antiplatelet drugs in AIS management showed superior efficacy without increasing adverse effects, suggesting its potential for clinical application.

5.
Nat Commun ; 14(1): 6068, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770428

ABSTRACT

Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO2.5 epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO2.75 with different ground electronic properties before reaching a fully oxidized, metallic SrFeO3 phase. The diffusion steps and reaction intermediates are revealed by means of ab-initio calculations. The principles of controlling oxygen diffusion pathways and reaction intermediates demonstrated here may advance the rational design of structurally ordered oxides for tailored applications and provide insights for developing devices with multiple states of regulation.

6.
Nano Lett ; 23(15): 6839-6844, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37463412

ABSTRACT

Longevity of Li ion batteries strongly depends on the interaction of transporting Li ions in electrode crystals with defects. However, detailed interactions between the Li ion flux and structural defects in the host crystal remain obscure due to the transient nature of such interactions. Here, by in situ transmission electron microscopy and density function theory calculations, we reveal how the diffusion pathways and transport kinetics of a Li ion can be affected by planar defects in a tungsten trioxide lattice. We uncover that changes in charge distribution and lattice spacing along the planar defects disrupt the continuity of ion conduction channels and dramatically increase the energy barrier of Li diffusion, thus, arresting Li ions at the defect sites and twisting the lithiation front. The atomic-scale understanding holds critical implications for rational interface design in solid-state batteries and solid oxide fuel cells.

7.
Nat Commun ; 14(1): 1346, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906649

ABSTRACT

Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials' physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm-2 in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies.

8.
Nanoscale ; 15(3): 1119-1127, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36594352

ABSTRACT

Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La0.5Sr0.5Ni1-xFexO3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance, suggesting common motifs of the active surface with high surface area systems.

9.
Nat Mater ; 21(11): 1246-1251, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36175522

ABSTRACT

Manipulating the insulator-metal transition in strongly correlated materials has attracted a broad range of research activity due to its promising applications in, for example, memories, electrochromic windows and optical modulators1,2. Electric-field-controlled hydrogenation using ionic liquids3-6 and solid electrolytes7-9 is a useful strategy to obtain the insulator-metal transition with corresponding electron filling, but faces technical challenges for miniaturization due to the complicated device architecture. Here we demonstrate reversible electric-field control of nanoscale hydrogenation into VO2 with a tunable insulator-metal transition using a scanning probe. The Pt-coated probe serves as an efficient catalyst to split hydrogen molecules, while the positive-biased voltage accelerates hydrogen ions between the tip and sample surface to facilitate their incorporation, leading to non-volatile transformation from insulating VO2 into conducting HxVO2. Remarkably, a negative-biased voltage triggers dehydrogenation to restore the insulating VO2. This work demonstrates a local and reversible electric-field-controlled insulator-metal transition through hydrogen evolution and presents a versatile pathway to exploit multiple functional devices at the nanoscale.

10.
Nano Lett ; 22(13): 5530-5537, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35771509

ABSTRACT

Epitaxial growth is a powerful tool for synthesizing heterostructures and integrating multiple functionalities. However, interfacial mixing can readily occur and significantly modify the properties of layered structures, particularly for those containing energy storage materials with smaller cations. Here, we show a two-step sequence involving the growth of an epitaxial LiCoO2 cathode layer followed by the deposition of a binary transition metal oxide. Orientation-controlled epitaxial synthesis of the model solid-state-electrolyte Li2WO4 and anode material Li4Ti5O12 occurs as WO3 and TiO2 nucleate and react with Li ions from the underlying cathode. We demonstrate that this lithiation-assisted epitaxy approach can be used for energy materials discovery and exploring different combinations of epitaxial interfaces that can serve as well-defined model systems for mechanistic studies of energy storage and conversion processes.

11.
Nat Mater ; 21(7): 795-803, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35501365

ABSTRACT

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh g-1 at 20 mA g-1, and retains a capacity of 191 mAh g-1 at a high rate of 1 A g-1. It exhibits superb cycling stability with a capacity of 225 mAh g-1 at 200 mA g-1 for 400 cycles, and a Coulombic efficiency of 99.93%. We attribute the enhanced performance to the cubic rock-salt framework, which promotes low-energy migration paths. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials.

12.
ACS Nano ; 16(1): 1358-1367, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35000379

ABSTRACT

The performance of energy storage materials is often governed by their structure at the atomic scale. Conventional electron microscopy can provide detailed information about materials at these length scales, but direct imaging of light elements such as lithium presents a challenge. While several recent techniques allow lithium columns to be distinguished, these typically either involve complex contrast mechanisms that make image interpretation difficult or require significant expertise to perform. Here, we demonstrate how center-of-mass scanning transmission electron microscopy (CoM-STEM) provides an enhanced ability for simultaneous imaging of lithium and heavier element columns in lithium ion conductors. Through a combination of experiments and multislice electron scattering calculations, we show that CoM-STEM is straightforward to perform and produces directly interpretable contrast for thin samples, while being more robust to variations in experimental parameters than previously demonstrated techniques. As a result, CoM-STEM is positioned to become a reliable and facile method for directly probing all elements within energy storage materials at the atomic scale.

13.
Nano Lett ; 21(19): 8324-8331, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34546060

ABSTRACT

Rare earth nickelates including LaNiO3 are promising catalysts for water electrolysis to produce oxygen gas. Recent studies report that Fe substitution for Ni can significantly enhance the oxygen evolution reaction (OER) activity of LaNiO3. However, the role of Fe in increasing the activity remains ambiguous, with potential origins that are both structural and electronic in nature. On the basis of a series of epitaxial LaNi1-xFexO3 thin films synthesized by molecular beam epitaxy, we report that Fe substitution tunes the Ni oxidation state in LaNi1-xFexO3 and a volcano-like OER trend is observed, with x = 0.375 being the most active. Spectroscopy and ab initio modeling reveal that high-valent Fe3+δ cationic species strongly increase the transition-metal (TM) 3d bandwidth via Ni-O-Fe bridges and enhance TM 3d-O 2p hybridization, boosting the OER activity. These studies deepen our understanding of structural and electronic contributions that give rise to enhanced OER activity in perovskite oxides.

14.
Adv Mater ; 33(33): e2101425, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34235791

ABSTRACT

Hydrogen (H2 ) production from direct seawater electrolysis is an economically appealing yet fundamentally and technically challenging approach to harvest clean energy. The current seawater electrolysis technology is significantly hindered by the poor stability and low selectivity of the oxygen evolution reaction (OER) due to the competition with chlorine evolution reaction in practical application. Herein, iron and phosphor dual-doped nickel selenide nanoporous films (Fe,P-NiSe2 NFs) are rationally designed as bifunctional catalysts for high-efficiency direct seawater electrolysis. The doping of Fe cation increases the selectivity and Faraday efficiency (FE) of the OER. While the doping of P anions improves the electronic conductivity and prevents the dissolution of selenide by forming a passivation layer containing P-O species. The Fe-dopant is identified as the primary active site for the hydrogen evolution reaction, and meanwhile, stimulates the adjacent Ni atoms as active centers for the OER. The experimental analyses and theoretical calculations provide an insightful understanding of the roles of dual-dopants in boosting seawater electrolysis. As a result, a current density of 0.8 A cm-2 is archived at 1.8 V with high OER selectivity and long-term stability for over 200 h, which surpasses the benchmarking platinum-group-metals-free electrolyzers.

15.
Sci Adv ; 7(10)2021 Mar.
Article in English | MEDLINE | ID: mdl-33674310

ABSTRACT

Recent discovery of superconductivity in Nd0.8Sr0.2NiO2 motivates the synthesis of other nickelates for providing insights into the origin of high-temperature superconductivity. However, the synthesis of stoichiometric R 1-x Sr x NiO3 thin films over a range of x has proven challenging. Moreover, little is known about the structures and properties of the end member SrNiO3 Here, we show that spontaneous phase segregation occurs while depositing SrNiO3 thin films on perovskite oxide substrates by molecular beam epitaxy. Two coexisting oxygen-deficient Ruddlesden-Popper phases, Sr2NiO3 and SrNi2O3, are formed to balance the stoichiometry and stabilize the energetically preferred Ni2+ cation. Our study sheds light on an unusual oxide thin-film nucleation process driven by the instability in perovskite structured SrNiO3 and the tendency of transition metal cations to form their most stable valence (i.e., Ni2+ in this case). The resulting metastable reduced Ruddlesden-Popper structures offer a testbed for further studying emerging phenomena in nickel-based oxides.

16.
Nat Commun ; 12(1): 237, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431888

ABSTRACT

Metal anode instability, including dendrite growth, metal corrosion, and hetero-ions interference, occurring at the electrolyte/electrode interface of aqueous batteries, are among the most critical issues hindering their widespread use in energy storage. Herein, a universal strategy is proposed to overcome the anode instability issues by rationally designing alloyed materials, using Zn-M alloys as model systems (M = Mn and other transition metals). An in-situ optical visualization coupled with finite element analysis is utilized to mimic actual electrochemical environments analogous to the actual aqueous batteries and analyze the complex electrochemical behaviors. The Zn-Mn alloy anodes achieved stability over thousands of cycles even under harsh electrochemical conditions, including testing in seawater-based aqueous electrolytes and using a high current density of 80 mA cm-2. The proposed design strategy and the in-situ visualization protocol for the observation of dendrite growth set up a new milestone in developing durable electrodes for aqueous batteries and beyond.

17.
JACS Au ; 1(12): 2216-2223, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34977893

ABSTRACT

Restructuring is an important yet less understood phenomenon in the catalysis community. Recent studies have shown that a group of transition metal sulfide catalysts can completely or partially restructure during electrochemical reactions which then exhibit high activity even better than the best commercial standards. However, such restructuring processes and the final structures of the new catalysts are elusive, mainly due to the difficulty from the reaction-induced changes that cannot be captured by ex situ characterizations. To establish the true structure-property relationship in these in situ generated catalysts, we use multimodel operando characterizations including Raman spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity to investigate the restructuring of a representative catalyst, Co9S8, that shows better activity compared to the commercial standard RuO2 during the oxygen evolution reaction (OER), a key half reaction in water-splitting for hydrogen generation. We find that Co9S8 ultimately converts to oxide cluster (CoO x ) containing six oxygen coordinated Co octahedra as the basic unit which is the true catalytic center to promote high OER activity. The density functional theory calculations verify the in situ generated CoO x consisting of edge-sharing CoO6 octahedral clusters as the actual active sites. Our results also provide insights to design other transition-metal-based materials as efficient electrocatalysts that experience a similar restructuring in OER.

19.
ACS Nano ; 14(11): 14887-14894, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33074667

ABSTRACT

Epitaxial Fe3O4 thin films grown on single crystal MgO(001) present well-defined model systems to study fundamental multivalent ion diffusion and associated phase transition processes in transition-metal-oxide-based cathodes. In this work, we show at an atomic scale the Mg2+ diffusion pathways, kinetics, and reaction products at the Fe3O4/MgO heterostructures under different oxygen partial pressures but with the same thermal annealing conditions. Combining microscopic, optical, and spectroscopic techniques, we demonstrate that an oxygen-rich environment promotes facile Mg2+ incorporation into the Fe2+ sites, leading to the formation of Mg1-xFe2+xO4 spinel structures, where the corresponding portion of the Fe2+ ions are oxidized to Fe3+. Conversely, annealing in vacuum results in the formation of a thin interfacial rocksalt layer (Mg1-yFeyO), which serves as a blocking layer leading to significantly reduced Mg2+ diffusion to the bulk Fe3O4. The observed changes in transport and optical properties as a result of Mg diffusion are interpreted in light of the electronic structures determined by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Our results reveal the critical role of available anions in governing cation diffusion in the spinel structures and the need to prevent formation of unwanted reaction intermediates for the promotion of facile cation diffusion.

20.
Adv Mater ; 32(45): e2005003, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33006412

ABSTRACT

Creating new functionality in materials containing transition metals is predicated on the ability to control the associated charge states. For a given transition metal, there is an upper limit on valence that is not exceeded under normal conditions. Here, it is demonstrated that this limit of 3+ for Ni and Fe can be exceeded via synthesis of (SrNiO3 )m /(LaFeO3 )n superlattices by tuning n and m. The Goldschmidt tolerance constraints are lifted, and SrNi4+ O3 with holes on adjacent O anions is stabilized as a perovskite at the single-unit-cell level (m = 1). Holding m = 1, spectroscopy reveals that the n = 1 superlattice contains Ni3+ and Fe4+ , whereas Ni4+ and Fe3+ are observed in the n = 5 superlattice. It is revealed that the B-site cation valences can be tuned by controlling the magnitude of the FeO6 octahedral rotations, which, in turn, determine the energy balance between Ni3+ /Fe4+ and Ni4+ /Fe3+ , thus controlling emergent electrical properties such as the band alignment and resulting hole confinement. This approach can be extended to other systems for synthesizing novel, metastable layered structures with new functionalities.

SELECTION OF CITATIONS
SEARCH DETAIL