Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1860(5): 902-909, 2016 May.
Article in English | MEDLINE | ID: mdl-26363462

ABSTRACT

BACKGROUND: The human telomere contains tandem repeat of (TTAGG) capable of forming a higher order DNA structure known as G-quadruplex. Porphyrin molecules such as TMPyP4 bind and stabilize G-quadruplex structure. METHODS: Isothermal titration calorimetry (ITC), circular dichroism (CD), and mass spectroscopy (ESI/MS), were used to investigate the interactions between TMPyP4 and the Co(III), Ni(II), Cu(II), and Zn(II) complexes of TMPyP4 (e.g. Co(III)-TMPyP4) and a model human telomere G-quadruplex (hTel22) at or near physiologic ionic strength ([Na(+)] or [K(+)]≈0.15M). RESULTS: The apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 all formed complexes having a saturation stoichiometry of 4:1, moles of ligand per mole of DNA. Binding of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 is described by a "four-independent-sites model". The two highest-affinity sites exhibit a K in the range of 10(8) to 10(10)M(-1) with the two lower-affinity sites exhibiting a K in the range of 10(4) to 10(5)M(-1). Binding of Co(III)-TMPyP4, and Zn(II)-TMPyP4, is best described by a "two-independent-sites model" in which only the end-stacking binding mode is observed with a K in the range of 10(4) to 10(5)M(-1). CONCLUSIONS: In the case of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4, the thermodynamic signatures for the two binding modes are consistent with an "end stacking" mechanism for the higher affinity binding mode and an "intercalation" mechanism for the lower affinity binding mode. In the case of Co(III)-TMPyP4 and Zn(II)-TMPyP4, both the lower affinity for the "end-stacking" mode and the loss of the intercalative mode for forming the 2:1 complexes with hTel22 are attributed to the preferred metal coordination geometry and the presence of axial ligands. GENERAL SIGNIFICANCE: The preferred coordination geometry around the metal center strongly influences the energetics of the interactions between the metallated-TMPyP4 and the model human telomeric G-quadruplex.


Subject(s)
Cobalt/chemistry , Copper/chemistry , Nickel/chemistry , Oligonucleotides/chemistry , Porphyrins/chemistry , Zinc/chemistry , Binding Sites , Calorimetry , Cations, Divalent , Circular Dichroism , G-Quadruplexes , Humans , Kinetics , Ligands , Telomere/chemistry , Thermodynamics
2.
Bioorg Med Chem ; 21(23): 7515-22, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24148836

ABSTRACT

Most of the G-quadruplex interactive molecules reported to date contain extended aromatic flat ring systems and are believed to bind principally by π-π stacking on the end G-tetrads of the quadruplex structure. One such molecule, TMPyP4, (5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin), exhibits high affinity and some selectivity for G-quadruplex DNA over duplex DNA. Although not a realistic drug candidate, TMPyP4 is used in many nucleic acid research laboratories as a model ligand for the study of small molecule G-quadruplex interactions. Here we report on the synthesis and G-quadruplex interactions of four new cationic porphyrin ligands having only 1, 2, or 3 (N-methyl-4-pyridyl) substituents. The four new ligands are: P(5) (5-(N-methyl-4-pyridyl)porphyrin), P(5,10) (5,10-di(N-methyl-4-pyridyl)porphyrin), P(5,15) (5,15-di(N-methyl-4-pyridyl)porphyrin), and P(5,10,15) (5,10,15-tri(N-methyl-4-pyridyl)porphyrin). Even though these compounds have been previously synthesized, we report alternative synthetic routes that are more efficient and that result in higher yields. We have used ITC, CD, and ESI-MS to explore the effects of the number of N-methyl-4-pyridyl substituents and the substituent position on the porphyrin on the G-quadruplex binding energetics. The relative affinities for binding these ligands to the WT Bcl-2 promoter sequence G-quadruplex are: K(TMPyP4)≈K(P)(5,15)>KP(5,10,15)>>>KP(5,10), KP(5). The saturation stoichiometry is 2:1 for both P(5,15) and P(5,10,15), while neither P(5) nor P(5,10) exhibit significant complex formation with the WT Bcl-2 promoter sequence G-quadruplex. Additionally, binding of P(5,15) appears to interact by an 'intercalation mode' while P(5,10,15) appears to interact by an 'end-stacking mode'.


Subject(s)
DNA/metabolism , G-Quadruplexes/drug effects , Porphyrins/chemistry , Porphyrins/pharmacology , Thermodynamics , Binding Sites , DNA/chemistry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...