Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 95: 103184, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723320

ABSTRACT

Synthesizing 7T Susceptibility Weighted Imaging (SWI) from 3T SWI could offer significant clinical benefits by combining the high sensitivity of 7T SWI for neurological disorders with the widespread availability of 3T SWI in diagnostic routines. Although methods exist for synthesizing 7T Magnetic Resonance Imaging (MRI), they primarily focus on traditional MRI modalities like T1-weighted imaging, rather than SWI. SWI poses unique challenges, including limited data availability and the invisibility of certain tissues in individual 3T SWI slices. To address these challenges, we propose a Self-supervised Anatomical Continuity Enhancement (SACE) network to synthesize 7T SWI from 3T SWI using plentiful 3T SWI data and limited 3T-7T paired data. The SACE employs two specifically designed pretext tasks to utilize low-level representations from abundant 3T SWI data for assisting 7T SWI synthesis in a downstream task with limited paired data. One pretext task emphasizes input-specific morphology by balancing the elimination of redundant patterns with the preservation of essential morphology, preventing the blurring of synthetic 7T SWI images. The other task improves the synthesis of tissues that are invisible in a single 3T SWI slice by aligning adjacent slices with the current slice and predicting their difference fields. The downstream task innovatively combines clinical knowledge with brain substructure diagrams to selectively enhance clinically relevant features. When evaluated on a dataset comprising 97 cases (5495 slices), the proposed method achieved a Peak Signal-to-Noise Ratio (PSNR) of 23.05 dB and a Structural Similarity Index (SSIM) of 0.688. Due to the absence of specific methods for 7T SWI, our method was compared with existing enhancement techniques for general 7T MRI synthesis, outperforming these techniques in the context of 7T SWI synthesis. Clinical evaluations have shown that our synthetic 7T SWI is clinically effective, demonstrating its potential as a clinical tool.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Image Enhancement/methods , Brain/diagnostic imaging , Algorithms , Image Interpretation, Computer-Assisted/methods
2.
J Transl Int Med ; 12(2): 197-208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779116

ABSTRACT

Background and Objectives: The Alberta Stroke Program CT Score (ASPECTS) is a widely used rating system for assessing infarct extent and location. We aimed to investigate the prognostic value of ASPECTS subregions' involvement in the long-term functional outcomes of acute ischemic stroke (AIS). Materials and Methods: Consecutive patients with AIS and anterior circulation large-vessel stenosis and occlusion between January 2019 and December 2020 were included. The ASPECTS score and subregion involvement for each patient was assessed using posttreatment magnetic resonance diffusion-weighted imaging. Univariate and multivariable regression analyses were conducted to identify subregions related to 3-month poor functional outcome (modified Rankin Scale scores, 3-6) in the reperfusion and medical therapy cohorts, respectively. In addition, prognostic efficiency between the region-based ASPECTS and ASPECTS score methods were compared using receiver operating characteristic curves and DeLong's test. Results: A total of 365 patients (median age, 64 years; 70% men) were included, of whom 169 had poor outcomes. In the reperfusion therapy cohort, multivariable regression analyses revealed that the involvement of the left M4 cortical region in left-hemisphere stroke (adjusted odds ratio [aOR] 5.39, 95% confidence interval [CI] 1.53-19.02) and the involvement of the right M3 cortical region in right-hemisphere stroke (aOR 4.21, 95% CI 1.05-16.78) were independently associated with poor functional outcomes. In the medical therapy cohort, left-hemisphere stroke with left M5 cortical region (aOR 2.87, 95% CI 1.08-7.59) and caudate nucleus (aOR 3.14, 95% CI 1.00-9.85) involved and right-hemisphere stroke with right M3 cortical region (aOR 4.15, 95% CI 1.29-8.18) and internal capsule (aOR 3.94, 95% CI 1.22-12.78) affected were related to the increased risks of poststroke disability. In addition, region-based ASPECTS significantly improved the prognostic efficiency compared with the conventional ASPECTS score method. Conclusion: The involvement of specific ASPECTS subregions depending on the affected hemisphere was associated with worse functional outcomes 3 months after stroke, and the critical subregion distribution varied by clinical management. Therefore, region-based ASPECTS could provide additional value in guiding individual decision making and neurological recovery in patients with AIS.

3.
Eur Radiol ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38337069

ABSTRACT

OBJECTIVES: We aim to investigate whether cerebral small vessel disease (cSVD) imaging markers correlate with deep medullary vein (DMV) damage in small vessel occlusion acute ischemic stroke (SVO-AIS) patients. METHODS: The DMV was divided into six segments according to the regional anatomy. The total DMV score (0-18) was calculated based on segmental continuity and visibility. The damage of DMV was grouped according to the quartiles of the total DMV score. Neuroimaging biomarkers of cSVD including white matter hyperintensity (WMH), cerebral microbleed (CMB), perivascular space (PVS), and lacune were identified. The cSVD score were further analyzed. RESULTS: We included 229 SVO-AIS patients, the mean age was 63.7 ± 23.1 years, the median NIHSS score was 3 (IQR, 2-6). In the severe DMV burden group (the 4th quartile), the NIHSS score grade (6 (3-9)) was significantly higher than other groups (p < 0.01). The grade scores for basal ganglia PVS (BG-PVS) were positively correlated with the degree of DMV (R = 0.67, p < 0.01), rather than centrum semivole PVS (CS-PVS) (R = 0.17, p = 0.1). In multivariate analysis, high CMB burden (adjusted odds ratio [aOR], 25.38; 95% confidence interval [CI], 1.87-345.23) was associated with severe DMV scores. In addition, BG-PVS was related to severe DMV burden in a dose-dependent manner: when BG-PVS score was 3 and 4, the aORs of severe DMV burden were 18.5 and 12.19, respectively. CONCLUSION: The DMV impairment was associated with the severity of cSVD, which suggests that DMV burden may be used for risk stratification in SVO-AIS patients. CLINICAL RELEVANCE STATEMENT: The DMV damage score, based on the association between small vessel disease and the deep medullary veins impairment, is a potential new imaging biomarker for the prognosis of small vessel occlusion acute ischemic stroke, with clinical management implications. KEY POINTS: • The damage to the deep medullary vein may be one mechanism of cerebral small vessel disease. • Severe burden of the basal ganglia perivascular space and cerebral microbleed is closely associated with significant impairment to the deep medullary vein. • The deep medullary vein damage score may reflect a risk of added vascular damage in small vessel occlusion acute ischemic stroke patients.

4.
IEEE Trans Med Imaging ; 43(5): 1828-1840, 2024 May.
Article in English | MEDLINE | ID: mdl-38194397

ABSTRACT

Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a way to visualize the structure and function of human lung, but the long imaging time limits its broad research and clinical applications. Deep learning has demonstrated great potential for accelerating MRI by reconstructing images from undersampled data. However, most existing deep convolutional neural networks (CNN) directly apply square convolution to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. In this work, we propose an encoding enhanced (EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2 complex CNN employs convolution along either the frequency or phase-encoding direction, resembling the mechanisms of k-space sampling, to maximize the utilization of the encoding correlation and integrity within a row or column of k-space. We also employ complex convolution to learn rich representations from the complex k-space data. In addition, we develop a feature-strengthened modularized unit to further boost the reconstruction performance. Experiments demonstrate that our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI from 6-fold undersampled k-space data and provide lung function measurements with minimal biases compared with fully sampled images. These results demonstrate the effectiveness of the proposed algorithmic components and indicate that the proposed approach could be used for accelerated pulmonary MRI in research and clinical lung disease patient care.


Subject(s)
Image Processing, Computer-Assisted , Lung , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Phantoms, Imaging , Deep Learning , Xenon Isotopes/chemistry
5.
J Magn Reson Imaging ; 59(1): 340-349, 2024 01.
Article in English | MEDLINE | ID: mdl-37183874

ABSTRACT

BACKGROUND: Global brain health has gained increasing attention recently. Imaging markers of brain frailty have been related to functional outcomes in previous studies on anterior circulation; however, little data are available on imaging markers and posterior circulation. PURPOSE: To investigate the impact of brain frailty on functional outcomes in patients with acute perforating artery infarction (PAI) of the posterior circulation. STUDY TYPE: Prospective. POPULATION: One hundred patients (60.78 ± 9.51 years, 72% men) with acute posterior circulation PAI (determined by diffusion-weighted magnetic resonance imaging (MRI)/time-of-flight MR angiography). FIELD STRENGTH/SEQUENCE: T1- and T2-weighted fast spin echo, T2-weighted fluid-attenuated inversion recovery, diffusion-weighted echo planar, gradient echo (susceptibility-weight imaging), and 3D time-of-flight MR angiography sequences at 3.0 T. ASSESSMENT: Periventricular and deep white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS) in the basal ganglia and centrum semiovale area, lacunes, cerebral microbleeds (CMB), and total brain frailty score by calculating the above imaging characters were rated visually by three radiologists with 9, 10, and 11 years of experience and one neuroradiologist with 12. Infarction volume was assessed using baseline diffusion-weighted imaging (DWI) data obtained within 24 hours of symptom onset. A modified Rankin Scale (mRS) score >1 on day 90 defined an adverse functional outcome. Associations between the imaging markers of brain frailty and functional outcomes were assessed. STATISTICAL TESTS: Fisher's exact test, Mann-Whitney U test, and multivariable binary logistic regression. A P value <0.05 was considered statistically significant. RESULTS: Adverse prognoses (mRS > 1) were observed in 34 (34%) patients. Infarction volume, periventricular WMH, deep WMH, basal ganglia EPVS, CMB, and the brain frailty score were significantly associated with adverse functional outcomes. An increased brain frailty score was significantly associated with unfavorable mRS score on day 90 (odds ratio 1.773, 95% confidence interval 1.237-2.541). DATA CONCLUSION: Advanced MRI imaging markers of brain frailty, individually or combined as a total brain frailty score, were associated with worse functional outcomes after acute posterior circulation PAI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.


Subject(s)
Frailty , Male , Humans , Female , Prospective Studies , Frailty/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Arteries , Infarction
SELECTION OF CITATIONS
SEARCH DETAIL