Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38607267

ABSTRACT

The rapid population growth coupled with rising global energy demand underscores the crucial importance of advancing intermittent renewable energy technologies and low-emission vehicles, which will be pivotal toward carbon neutralization. Reversible solid oxide cells (RSOCs) hold significant promise as a technology for high-efficiency power generation, long-term chemical energy storage, and CO2 conversion. Herein, RSOCs were, for the first time, studied to power electric vehicles. Based on our experimental results, an ideal RSOC stack was established with reasonable assumptions. Subsequently, through analysis and comparison of important merits, such as power densities, energy densities, charging/refueling time, and fuel economy of RSOC-based electric vehicles (RSOCEVs), conventional internal combustor vehicles (ICEVs), and battery-based electric vehicles (BEVs), the advantages and prospects of RSOCEVs were highlighted. Our H2-H2O RSOCs exhibit high electrochemical performances in both fuel cell (peak power density = 1.6 W cm-2 at 750 °C) and electrolysis modes (current density = 2.0 A cm-2 at 1.3 V and 750 °C), along with durable reversible operation under a wide range of conditions. In CO-CO2, our RSOCs achieved excellent performance in fuel cell mode (peak power density = 0.68 cm-2 at 700 °C). Furthermore, a world record current density of 3.4 A cm-2 at 1.5 V and 750 °C was achieved in the CO2 electrolysis mode. Moreover, an assessment of the CO2 electrolysis efficiency was conducted, offering insights for establishing energy storage strategies and mitigating CO2 emissions. Therefore, the RSOC technology has the potential to assume a central role in a future energy system with abundant renewable power generation while mitigating the CO2 released from fossil fuels.

2.
Nat Commun ; 15(1): 3280, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627521

ABSTRACT

Non-oxidative methane dehydro-aromatization reaction can co-produce hydrogen and benzene effectively on a molybdenum-zeolite based thermochemical catalyst, which is a very promising approach for natural-gas upgrading. However, the low methane conversion and aromatics selectivity and weak durability restrain the realistic application for industry. Here, a mechanism for enhancing catalysis activity on methane activation and carbon-carbon bond coupling has been found to promote conversion and selectivity simultaneously by adding platinum-bismuth alloy cluster to form a trimetallic catalyst on zeolite (Pt-Bi/Mo/ZSM-5). This bimetallic alloy cluster has synergistic interaction with molybdenum: the formed CH3* from Mo2C on the external surface of zeolite can efficiently move on for C-C coupling on the surface of Pt-Bi particle to produce C2 compounds, which are the key intermediates of oligomerization. This pathway is parallel with the catalysis on Mo inside the cage. This catalyst demonstrated 18.7% methane conversion and 69.4% benzene selectivity at 710 °C. With 95% methane/5% nitrogen feedstock, it exhibited robust stability with slow deactivation rate of 9.3% after 2 h and instant recovery of 98.6% activity after regeneration in hydrogen. The enhanced catalytic activity is strongly associated with synergistic interaction with Mo and ligand effects of alloys by extensive mechanism studies and DFT calculation.

3.
J Am Chem Soc ; 146(7): 4704-4715, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38277126

ABSTRACT

Direct-methane solid oxide fuel cells (CH4-SOFCs) have gained significant attention as methane, the primary component of natural gas (NG), is cheap and widely available and the natural gas infrastructures are relatively mature. However, at intermediate temperatures (e.g., 600-650 °C), current CH4-SOFCs suffer from low performance and poor durability under a low steam-to-carbon ratio (S/C ratio), which is ascribed to the Ni-based anode that is of low catalytic activity and prone to coking. Herein, with the guidance of density functional theory (DFT) studies, a highly active and coking tolerant steam methane reforming (SMR) catalyst, Sm-doped CeO2-supported Ni-Ru (SCNR), was developed. The synergy between Ni and Ru lowers the activation energy of the first C-H bond activation and promotes CHx decomposition. Additionally, Sm doping increases the oxygen vacancy concentration in CeO2, facilitating H2O adsorption and dissociation. The SCNR can therefore simultaneously activate both CH4 and H2O molecules while oxidizing the CH* and improving coking tolerance. We then applied SCNR as the CH4-SOFC anode catalytic reforming layer. A peak power density of 733 mW cm-2 was achieved at 650 °C, representing a 55% improvement compared to that of pristine CH4-SOFCs (473 mW cm-2). Moreover, long-term durability testing, with >2000 h continuous operation, was performed under almost dry methane (5% H2O). These results highlight that CH4-SOFCs with a SCNR catalytic layer can convert NG to electricity with high efficiency and resilience.

4.
Adv Sci (Weinh) ; 10(8): e2206478, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36651120

ABSTRACT

Protonic ceramic electrochemical cells (PCECs) have been intensively studied as the technology that can be employed for power generation, energy storage, and sustainable chemical synthesis. Recently, there have been substantial advances in electrolyte and electrode materials for improving the performance of protonic ceramic fuel cells and protonic ceramic electrolyzers. However, the electrocatalytic materials development for synthesizing chemicals in PCECs has gained less attention, and there is a lack of systematic and fundamental understanding of the PCEC reactor design, reaction mechanisms, and electrode materials. This review comprehensively summarizes and critically evaluates the most up-to-date progress in employing PCECs to synthesize a wide range of chemicals, including ammonia, carbon monoxide, methane, light olefins, and aromatics. Factors that impact the conversion, selectivity, product yield, and energy efficiencies are discussed to provide new insights into designing electrochemical cells, developing electrode materials, and achieving economically viable chemical synthesis. The primary challenges associated with producing chemicals in PCECs are highlighted. Approaches to tackle these challenges are then offered, with a particular focus on deliberately designing electrode materials, aiming to achieve practically valuable product yield and energy efficiency. Finally, perspectives on the future development of PCECs for synthesizing sustainable chemicals are provided.

5.
ACS Appl Mater Interfaces ; 14(48): 53840-53849, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36440888

ABSTRACT

CH4-fueled metal-supported solid oxide fuel cells (CH4-MS-SOFCs) are propitious as CH4 is low-priced and readily available, and its renewable production is possible, such as biomethane. However, the current CH4-MS-SOFCs suffer from either poor power density or short durable operation, which is ascribed to the low catalytic activity and poor coking tolerance of the metallic anode support. Herein, we have deliberately designed and synthesized a highly active nanocomposite catalyst, Sm-doped CeO2-supported Ni, as the internal steam methane reforming catalyst, to optimize CH4-MS-SOFCs. Both power densities and durability of optimized CH4-MS-SOFCs have been dramatically enhanced compared to the pristine CH4-MS-SOFCs. The optimized CH4-MS-SOFCs deliver the highest performances among all zirconia-based CH4-MS-SOFCs. Furthermore, the operating temperature has been reduced to 600 °C. At 600 °C, a viable peak power density of >350 mW/cm2 is achieved, which is more than three times as high as the pristine CH4-MS-SOFCs. Furthermore, the optimized CH4-MS-SOFC achieves >1000 h of stable operation.

6.
ACS Appl Mater Interfaces ; 14(11): 13295-13304, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35262347

ABSTRACT

Highly active and selective CO2 methanation catalysts are critical to CO2 upgrading, synthetic natural gas production, and CO2 emission reduction. Wet impregnation is widely used to synthesize oxide-supported metallic nanoparticles as the catalyst for CO2 methanation. However, as the reagents cannot be homogeneously mixed at an atomic level, it is challenging to modulate the microstructure, crystal structure, chemical composition, and electronic structure of catalysts via wet impregnation. Herein, a scalable and straightforward catalyst fabrication approach has been designed and validated to produce Sm0.25Ce0.75O2-δ-supported Ni (SDC-Ni) as the CO2 methanation catalyst. By varying the chelating agents-to-total metal cations ratio (C/I ratio) during the catalyst synthesis, we can readily and simultaneously modulate the microstructure, metallic surface area, crystal structure, chemical composition, and electronic structure of SDC-Ni, consequently fine-tuning the oxide-support interactions and CO2 methanation activity. The optimal C/I ratio (0.1) leads to an SDC-Ni catalyst that facilitates C-O bond cleavage and significantly improves CO2 conversion at 250 °C. A CO2-to-CH4 yield of >73% has been achieved at 250 °C. Furthermore, a stable operation of >1500 hours has been demonstrated, and no degradation is observed. Extensive characterizations were performed to fundamentally understand how to tune and enhance CO2 methanation activity of SDC-Ni by modulating the C/I ratio. The correlation of physical, chemical, and catalytic properties of SDC-Ni with the C/I ratio is established and thoroughly elaborated in this work. This study could be applied to tune the oxide-support interactions of various catalysts for enhancing the catalytic activity.

7.
Commun Chem ; 4(1): 121, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-36697696

ABSTRACT

The intermediate operating temperatures (~400-600 °C) of reversible protonic ceramic fuel cells (RePCFC) permit the potential use of ammonia as a carbon-neutral high energy density fuel and energy storage medium. Here we show fabrication of anode-supported RePCFC with an ultra-dense (~100%) and thin (4 µm) protonic ceramic electrolyte layer. When coupled to a novel Ru-(BaO)2(CaO)(Al2O3) (Ru-B2CA) reversible ammonia catalyst, maximum fuel-cell power generation reaches 877 mW cm-2 at 650 °C under ammonia fuel. We report relatively stable operation at 600 °C for up to 1250 h under ammonia fuel. In fuel production mode, ammonia rates exceed 1.2 × 10-8 NH3 mol cm-2 s-1at ambient pressure with H2 from electrolysis only, and 2.1 × 10-6 mol NH3 cm-2 s-1 at 12.5 bar with H2 from both electrolysis and simulated recycling gas.

8.
Nature ; 557(7704): 217-222, 2018 05.
Article in English | MEDLINE | ID: mdl-29743690

ABSTRACT

Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency1,2. Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time3-6. Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells2,7,8, there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

9.
Science ; 349(6254): 1321-6, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26217064

ABSTRACT

Because of the generally lower activation energy associated with proton conduction in oxides compared to oxygen ion conduction, protonic ceramic fuel cells (PCFCs) should be able to operate at lower temperatures than solid oxide fuel cells (250° to 550°C versus ≥600°C) on hydrogen and hydrocarbon fuels if fabrication challenges and suitable cathodes can be developed. We fabricated the complete sandwich structure of PCFCs directly from raw precursor oxides with only one moderate-temperature processing step through the use of sintering agents such as copper oxide. We also developed a proton-, oxygen-ion-, and electron-hole-conducting PCFC-compatible cathode material, BaCo(0.4)Fe(0.4)Zr(0.1)Y(0.1)O(3-δ) (BCFZY0.1), that greatly improved oxygen reduction reaction kinetics at intermediate to low temperatures. We demonstrated high performance from five different types of PCFC button cells without degradation after 1400 hours. Power densities as high as 455 milliwatts per square centimeter at 500°C on H2 and 142 milliwatts per square centimeter on CH4 were achieved, and operation was possible even at 350°C.

SELECTION OF CITATIONS
SEARCH DETAIL
...