Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(19): 5847-5854, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700109

ABSTRACT

We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-C≡C-R) that affords a high grafting density. The ligand-metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG-PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands.

2.
Chem Sci ; 14(36): 9664-9677, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736633

ABSTRACT

We report the use of polymer N-heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO-b-PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO-b-PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes.

3.
Ultrason Sonochem ; 99: 106561, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37639875

ABSTRACT

The mulberry leaf protein extracted by ultrasound-assisted cellulase degradation (UACD) method was optimized with the protein dissolution amount (PDA) as the index. The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy of extracted mulberry leaf protein were measured. The functional characteristics of protein extracted by the UACD method were evaluated. Results showed that the extraction condition was optimized and adjusted to the following parameters: pH value of 7.20, ultrasound temperature of 35.00 °C, enzyme dosage of 4.20% and ultrasound time of 10.00 min. Under these optimized conditions, the experimental verification value of PDA was 13.87 mg/mL, which was approaching to the predicted value of 13.54 mg/mL. The analysis results of FTIR showed that after extraction by the UACD method, the mulberry leaf protein with the vibrational peak of ester carbonyl (C = O) absorption peak (1734.66 cm-1) disappeared. The α-helix content of protein extracted by the UACD decreased by 8.13%, and the ß-turn and random coil content of protein increased by 20.22% and 18.79%, respectively, compared to that of the blank. The microstructure of mulberry leaf protein showed that the UACD method could break the dense structure of protein raw materials, reduce the average size of proteins and increase the specific surface area and roughness of proteins. According to the results of functional characteristics, the mulberry leaf protein extracted by the UACD method presented the highest enzymolysis properties and solubility, which was beneficial for the application in the food industry. In conclusion, the UACD method was a very effective way to extract protein from mulberry leaf.


Subject(s)
Cellulase , Morus , Ultrasonography , Esters , Plant Leaves
4.
ACS Appl Mater Interfaces ; 15(34): 40343-40354, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37590263

ABSTRACT

This paper reports a robust strategy to catalyze in situ C-H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82-85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C-H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C-H bond activation when coupled with natural enzymes.


Subject(s)
Hydrogen Peroxide , Peroxidase , Biocatalysis , Peroxidases , Horseradish Peroxidase , Cobalt , Coloring Agents
5.
ACS Nano ; 17(13): 12788-12797, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37343112

ABSTRACT

Control of interparticle interactions in terms of their direction and strength highly relies on the use of anisotropic ligand grafting on nanoparticle (NP) building blocks. We report a ligand deficiency exchange strategy to achieve site-specific polymer grafting of gold nanorods (AuNRs). Patchy AuNRs with controllable surface coverage can be obtained during ligand exchange with a hydrophobic polystyrene ligand and an amphiphilic surfactant while adjusting the ligand concentration (CPS) and solvent condition (Cwater in dimethylformamide). At a low grafting density of ≤0.08 chains/nm2, dumbbell-like AuNRs with two polymer domains capped at the two ends can be synthesized through surface dewetting with a high purity of >94%. These site-specifically-modified AuNRs exhibit great colloidal stability in aqueous solution. Dumbbell-like AuNRs can further undergo supracolloidal polymerization upon thermal annealing to form one-dimensional plasmon chains of AuNRs. Such supracolloidal polymerization follows the temperature-solvent superposition principle as revealed by kinetic studies. Using the copolymerization of two AuNRs with different aspect ratios, we demonstrate the design of chain architectures by varying the reactivity of nanorod building blocks. Our results provide insights into the postsynthetic design of anisotropic NPs that potentially serve as units for polymer-guided supracolloidal self-assembly.

6.
Int J Biol Macromol ; 231: 123213, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36641019

ABSTRACT

Chitosan (CS)/carboxymethyl cellulose (CMC) porous hydrogels chemically crosslinked by epichlorohydrin were synthesized using polyethylene glycol (PEG) as a pore-forming agent for anionic (Congo red, CR) and cationic (methylene blue, MB) dyes removal from aqueous solutions. The swelling ratio of hydrogels prepared with 2 % CS and 2 % CMC (CS2/CMC2) exhibited optimal performance at different pHs. The addition of PEG into hydrogels (denoted as CS2/CMC2-PEG1.25) exhibited a significantly higher adsorption for CR and MB, increasing from 117.83 to 159.12 mg/g and 110.2 to 136 mg/g, respectively. The comprehensive analyses of Fourier transform infrared spectroscopy, thermalgravimetric study and scanning electron microscopy showed that CS2/CMC2-PEG1.25 hydrogels became more porous with no significant changes in intermolecular and intramolecular interactions, compared with CS2/CMC2 hydrogels. The adsorption process for CR and MB conformed to the pseudo-second-order and pseudo-first-order kinetics models, respectively. The results of adsorption isotherm for CR followed both Freundlich and Langmuir models with the maximum adsorption capacities of 1053.88 mg/g, whereas the isotherm for MB fitted the Langmuir model better with the maximum adsorption capacities of 331.72 mg/g. The thermodynamic study results proved that the CR and MB adsorption by hydrogels was spontaneous, but the CR adsorption was endothermic and the MB adsorption was exothermic.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Coloring Agents/chemistry , Carboxymethylcellulose Sodium/chemistry , Polyethylene Glycols , Adsorption , Porosity , Water Pollutants, Chemical/chemistry , Water Purification/methods , Thermodynamics , Hydrogels/chemistry , Biocompatible Materials , Kinetics , Cations/chemistry , Methylene Blue/chemistry , Hydrogen-Ion Concentration
7.
Nanoscale ; 14(19): 7364-7371, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35535972

ABSTRACT

We report a new design of polymer-patched gold nanoparticles (AuNPs) with controllable interparticle interactions in terms of their direction and strength. Patchy AuNPs (pAuNPs) are prepared through hydrophobicity-driven surface dewetting under deficient ligand exchange conditions. Using the exposed surface on pAuNPs as seeds, a highly controllable growth of AuNPs is carried out via seed-mediated growth while retaining the size of polymer domains. As guided by ligands, these pAuNPs can self-assemble directionally in two ways along the exposed surface (head-to-head) or the polymer-patched surface of pAuNPs (tail-to-tail). Control of the surface asymmetry/coverage on pAuNPs provides an important tool in balancing interparticle interactions (attraction vs. repulsion) that further tunes assembled nanostructures as clusters and nanochains. The self-assembly pathway plays a key role in determining the interparticle distance and therefore plasmon coupling of pAuNPs. Our results demonstrate a new paradigm in the directional self-assembly of anisotropic building blocks for hierarchical nanomaterials with interesting optical properties.

8.
iScience ; 25(5): 104220, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494232

ABSTRACT

There has been growing interest in water-processable conjugated polymers for biocompatible devices. However, some broadly used conjugated polymers like poly(3-hexylthiophene) (P3HT) are hydrophobic and they cannot be processed in water. We herein report a facile yet highly efficient assembly method to prepare water-dispersible pyridine-containing P3HT (Py-P3HT) nanoparticles (NPs) with a high yield (>80%) and a fine size below 100 nm. It is based on the fast nanoprecipitation of Py-P3HT stabilized by hydrophilic poly(acrylic acid) (PAA). Py-P3HT can form spherical NPs at a concentration up to 0.2 mg/mL with a diameter of ∼75 nm at a very low concentration of PAA, e.g., 0.01-0.1 mg/mL, as surface ligands. Those negatively charged Py-P3HT NPs can bind with metal cations and further support the growth of noble metal NPs like Ag and Au. Our self-assembly methodology potentially opens new doors to process and directly use hydrophobic conjugated polymers in a much broader context.

9.
Biomacromolecules ; 23(1): 196-209, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34964619

ABSTRACT

In cells, actin and tubulin polymerization is regulated by nucleation factors, which promote the nucleation and subsequent growth of protein filaments in a controlled manner. Mimicking this natural mechanism to control the supramolecular polymerization of macromolecular monomers by artificially created nucleation factors remains a largely unmet challenge. Biological nucleation factors act as molecular scaffolds to boost the local concentrations of protein monomers and facilitate the required conformational changes to accelerate the nucleation and subsequent polymerization. An accelerated assembly of synthetic poly(l-glutamic acid) into amyloid fibrils catalyzed by cationic silica nanoparticle clusters (NPCs) as artificial nucleation factors is demonstrated here and modeled as supramolecular polymerization with a surface-induced heterogeneous nucleation pathway. Kinetic studies of fibril growth coupled with mechanistic analysis demonstrate that the artificial nucleators predictably accelerate the supramolecular polymerization process by orders of magnitude (e.g., shortening the assembly time by more than 10 times) when compared to the uncatalyzed reaction, under otherwise identical conditions. Amyloid-like fibrillation was supported by a variety of standard characterization methods. Nucleation followed a Michaelis-Menten-like scheme for the cationic silica NPCs, while the corresponding anionic or neutral nanoparticles had no effect on fibrillation. This approach shows the effectiveness of charge-charge interactions and surface functionalities in facilitating the conformational change of macromolecular monomers and controlling the rates of nucleation for fibril growth. Molecular design approaches like these inspire the development of novel materials via biomimetic supramolecular polymerizations.


Subject(s)
Amyloid , Peptides , Amyloid/chemistry , Amyloidogenic Proteins , Kinetics , Peptides/chemistry , Polymerization
10.
Colloids Surf B Biointerfaces ; 205: 111829, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34023786

ABSTRACT

Phytoglycogen (PG), a water-soluble glycogen-like α-d-glucan, exists as natural dendritic nanoparticles which are known as a promising solubility enhancer and delivery vehicle for lipophilic compounds. However, the practical applications of PG in food and pharmaceutical fields are limited by their high hydrophilicity and relatively low encapsulation efficiency compared with other delivery systems. The objectives of this work were to chemically modify native PG nanoparticles with hydrophobic groups and to characterize their physicochemical properties, as well as to evaluate the application feasibility of modified PG (mPG) nanoparticles as a carrier for hydrophobic bioactive compounds. The surface hydroxyl groups of PG nanoparticles were capped with various anhydrides, e.g., acetic, valeric, and N-caprylic, to obtain the PG nanoparticles with different hydrophobicity. Successful modification by acyl groups was evidenced by both Fourier-transform infrared and nuclear magnetic resonance spectroscopies. The mPG nanoparticles exhibited a more compact structure and homogeneous size distribution as revealed by dynamic light scattering measurement and visualized by transmission electron microscope, while their size slightly increased with the chain length of anhydride. Rheological measurement revealed that the viscosity of mPG at low shear rate was increased with the increase of degree of substitution due to the intermolecular hydrophobic association. A novel pH-driven method to load curcumin showed significantly higher encapsulation efficiency and greater antioxidant activity compared with traditional ethanol mediated loading method. Hydrophobic modification of natural dendritic PG nanostructures demonstrates promising potential to develop food-grade nanocarriers for lipophilic bioactive compounds with improved bioactivity.


Subject(s)
Curcumin , Nanoparticles , Hydrophobic and Hydrophilic Interactions , Particle Size , Solubility , Water
11.
ACS Macro Lett ; 10(7): 786-790, 2021 07 20.
Article in English | MEDLINE | ID: mdl-35549198

ABSTRACT

Symmetry-broken nanoparticles (NPs) are important building blocks with directional interparticle interaction as a key to access the precise organization of NPs macroscopically. We report a facile, one-pot synthetic approach to prepare high-quality symmetry-broken plasmonic gold NPs (AuNPs). Symmetry-broken patterning is achieved through deficient ligand exchange of isotropic AuNPs with thiol-terminated polystyrene (PS-SH) in the presence of an amphiphilic polymer surfactant. The concentration of PS-SH plays a dominant role in tuning surface patterning and coverage of AuNPs. The formation of asymmetric surface patches arises from the interplay between the conformational entropy of polymer ligands and the interfacial energy between polymer-grafted AuNPs and the solvent. Our method illustrates new paradises to design asymmetric NPs with directional interparticle interactions to access the precise organization of NPs.


Subject(s)
Gold , Metal Nanoparticles , Ligands , Polymers , Sulfhydryl Compounds
12.
ChemSusChem ; 11(24): 4209-4213, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30346658

ABSTRACT

The fast and living ring-opening polymerization (ROP) of propylene oxide (PO) by metal-free catalysis is reported. By using triethyl borane (TEB) and organic Lewis bases (LBs, e.g.: phosphazene base, amidine and guanidine) as the catalysts, various alkyl alcohols can effectively initiate the ROP of PO, yielding tailor-made poly(propylene oxide)s (PPOs) with high regioregularity, predictable molecular weights, and narrow dispersity approaching Poisson distribution. The TEB/LB catalysts present unprecedentedly high activity (turnover frequency of up to 7500 h-1 ) and a truly living character for the polymerization, as evidenced by kinetic studies that showed fast initiation and growth, unobserved chain-transfer to PO, chain extension reactions, and the synthesis of various PPO-based block copolymers with narrow dispersities (D<1.1).

SELECTION OF CITATIONS
SEARCH DETAIL