Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 635-9, 2016 Mar.
Article in Chinese | MEDLINE | ID: mdl-27400496

ABSTRACT

The polycrystalline silicon thin films play an important role in the field of electronics. In the paper, α-SiAl composite membranes on glass substrates was prepared by magnetron co-sputtering. The contents of Al radicals encapsulated-in the α-Si film can be adjusted by changing the Al to Si sputtering power ratios. The as-prepared α-Si films were converted into polycrystalline films by using a rapid thermal annealing (RTP) at low temperature of 350 degrees C for 10 minutes in N2 atmosphere. An X-ray diffractometer, and Raman scattering and UV-Visible-NIR Spectrometers were used to characterize the properties of the Pc-Si films. The influences of Al content on the properties of the Pc-Si films were studied. The results showed that the polycrystalline silicon films were obtained from α-SiAl composite films which were prepared by magnetron co-sputtering at a low temperature following by a rapid thermal annealing. The grain size and the degree of crystallization of the Pc-Si films increased with the increase of Al content, while the optical band gap was reduced. The nc-Si films were prepared when the Al to Si sputtering power ratio was 0.1. And a higher Crystallization rate (≥ 85%) of polycrystalline silicon films were obtained when the ratio was 0.3. The band gaps of the polycrystalline silicon films can be controlled by changing the aluminum content in the films.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1770-3, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26717722

ABSTRACT

The silicon-rich SiN(x) films were fabricated on Si(100) substrate and quartz substrate at different substrate temperatures varying from room temperature to 400 degrees C by bipolar pulse ane RF magnetron co-sputtering deposition technique. After deposition, the films were annealed in a nitrogen atmosphere by rapid photothermal annealing at 1050 degrees C for 3 minutes. This thermal step allows the formation of the silicon quantum dots. Fourier transform infrared spectroscopy, Raman spectroscopy, grazing incidence X-ray diffraction and photoluminescence spectroscopy were used to analyze the bonding configurations, microstructures and luminescence properties of the films. The experimental results showed that: silicon-rich Si-N bonds were found in Fourier transform infrared spectra, suggesting that the silicon-rich SiN, films were successfully prepared; when the substrate temperature was not lower than 200 degrees C, the Raman spectra of the films showed the transverse optical mode of Si-Si vibration, while the significant diffraction peaks of Si(111) and Si(311) were shown in grazing incidence X-ray diffraction spectra, confirming the formation of silicon quantum dots; our work indicated that there was an optimal substrate temperature (300 degrees C), which could significantly increase the amount and the crystalline volume fraction of silicon quantum dots; three visible photoluminescence bands can be obtained for both 30 degrees C sample and 400 degrees C sample, and in combination with Raman results, the emission peaks were reasonably explained by using the quantum confinement effect and radiative recombination defect state of Si nanocrystals; the average size of the silicon quantum dots is 3.5 and 3.4 nm for the 300 degrees C sample and 400 degrees C sample, respectively. These results are useful for optimizing the fabrication parameters of silicon quantum dots embedded in SiN. thin films and have valuable implications for silicon based photoelectric device applications.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2169-74, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25474956

ABSTRACT

In the present paper, nanocrystalline silicon thin films on glass substrates were prepared by rapid thermal annealing (RTA) of RF magnetron sputtered system and alpha-Si/Al films at a low temperature in Nz atmosphere. Optical metallographic microscope, confocal optical microscopy, X-ray diffractometer, Raman scattering and UV-Vis-NIR spectrometers were used to characterize the surface morphology and the phase and optical properties of nc-Si films. The influence of annealing process on the nc-Si films properties was studied. The results showed that nc-Si films were obtained after aluminum induced crystallization of the alpha-Si/Al films at 300 degrees C, withthe crystallization rate 15.56% and the grain size 1.75 nm. The surface uniformity and lattice distortion of nc-Si films reduced, while grain size, degree of crystallization and the optical band gap of the films increased with increasing annealing temperature from 300 to 400 degrees C. As the annealing temperature increased from 400 to 500 degrees C, although the degree of crystallization and grain size increased, the tendencies of all other characteristics were opposite. On the contrary, the surface uniformity and the lattice distortion increased, but the optical band gap of nc-Si films reduced. The optical properties of the resulting films were confirmed by the absorption model of nc-Si thin films, where the tendency of band gap changes is in consistent with the optical modeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...