Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Environ Res ; 255: 119134, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38751002

ABSTRACT

The deep removal of organic pollutants is challenging for coagulation technology in drinking water and wastewater treatment plants to satisfy the rising water standards. Iron (III) chloride (FeCl3) is a popular inorganic coagulant; although it has good performance in removing the turbidity (TB) in water at an alkaline medium, it cannot remove dissolved pollutants and natural organic matter such as humic acid water solution. Additionally, its hygroscopic nature complicates determining the optimal dosage for effective coagulation. Biochar (BC), a popular adsorbent with abundant functional groups, porous structure, and relatively high surface area, can adsorb adsorbates from water matrices. Therefore, combining BC with FeCl3 presents a potential solution to address the challenges associated with iron chloride. Consequently, this study focused on preparing and characterizing a novel biochar/ferric chloride-based coagulant (BC-FeCl3) for efficient removal of turbidity (TB) and natural organic matter, specifically humic acid (HA), from synthetic wastewater. The potential solution for the disposal of produced sludge was achieved by its recovering and recycling, then used in adsorption of HA from aqueous solution. The novel coagulant presented high TB and HA removal within 10 min of settling period at pH solution of 7.5. Furthermore, the recovered sludge presented a good performance in the adsorption of HA from aqueous solution. Adsorption isotherm and kinetics studies revealed that the Pseudo-second-order model best described kinetic adsorption, while the Freundlich model dominated the adsorption isotherm.

2.
J Sci Food Agric ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545920

ABSTRACT

BACKGROUND: This study investigated per- and polyfluoroalkyl substances (PFASs) in 53 fruit and vegetable samples collected from a local wholesale and retail market in Sydney and a local supermarket in Newcastle. As there is limited information about PFAS levels in vegetables on the market, this study aimed to fill this gap and assess potential risks for humans through consumption of these vegetables. METHODS: QuEChERS extraction - a solid-phase extraction method, a portmanteau word formed from 'quick, easy, cheap, effective, rugged and safe' - followed by enhanced matrix removal-lipid cleaning and liquid chromatography-tandem mass spectrometry analysis were used to detect 30 PFASs in vegetables. RESULTS: PFOA was detected in 7 out of the 53 samples, with concentrations of 0.038-1.996 ng g-1 fresh weight; PFOS was detected in 2 samples only, with concentrations ranging from 0.132 to 0.911 ng g-1 fresh weight. PFHxS was not detected in any sample in this study. PFOA and PFOS concentrations measured in vegetables in this study constituted daily intake of 2.03 ng kg-1 body weight (BW) and 1.98 ng kg-1 BW, respectively, according to recommended daily vegetable intake and BW data from the Australian Bureau of Statistics. The most sensitive population group is girls of 4-8 years of age. These estimated exposure levels represent up to 1.3% of the tolerable daily intake for PFOA (160 ng kg-1 BW) and 9.9% for PFOS (20 ng kg-1 BW) according to Food Standards Australia New Zealand. Consumption of the vegetables from the study locations poses a marginal risk to human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Environ Res ; 249: 118416, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38316391

ABSTRACT

Microplastics (Mps) have emerged as a pervasive environmental concern, with their presence detected not only in freshwater ecosystems but also in drinking and bottled water sources. While extensive research has centered on understanding the origins, migration patterns, detection techniques, and ecotoxicological impacts of these contaminants, there remains a notable research gap about the strategies for Mps removal. This study reviews existing literature on chemical approaches for mitigating microplastic contamination within wastewater systems, focusing on coagulation precipitation, electrocoagulation, and advanced oxidation methods. Each approach is systematically explored, encompassing their respective mechanisms and operational dynamics. Furthermore, the comparative analysis of these three techniques elucidates their strengths and limitations in the context of MPs removal. By shedding light on the intricate mechanisms underlying these removal methods, this review contributes to the theoretical foundation of microplastic elimination from wastewater and identifies future research trajectories and potential challenges.


Subject(s)
Microplastics , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Wastewater/analysis , Microplastics/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Waste Disposal, Fluid/methods
4.
Chemosphere ; 335: 139095, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37268225

ABSTRACT

Research investigating the desorptive behaviour of PAHs from contaminated soils often overlooked the effects of source materials, especially coal tar and coal tar pitch and materials alike. In this study, a refined experimental approach was adopted to establish a simple-to-complex continuum of systems that allow the investigation of desorption kinetics of benzo(a)pyrene (BaP) and 3 other carcinogenic PAHs (cPAHs) over an incubation period of 48 d. By comparing the modelled desorption parameters, elucidation of the effects of PAH source materials on their desorptive behaviour was achieved. Desorption of cPAHs from coal tar and pitch was enhanced when they were added to soils, with rapidly desorbing fraction (Frap) of BaP increased from 0.68% for pitch to 1.10% and 2.66% for pitch treated soils, and from 2.57% for coal tar to 6.24% for coal tar treated soil G and 8.76% for coal tar treated sand (1 d). At 1 d, desorption of target cPAHs from solvent and source material spiked soils generally followed the order of solvent > coal tar > pitch. Increases in Frap of cPAHs were observed in coal tar-treated soils after 48 d soil incubation (0.33%-1.16% for soil M, p ≥ 0.05, 6.24%-9.21% for soil G, p < 0.05) and was attributed to the continuous migration of coal tar as a non-aqueous phase liquid (NAPL) into soil pore structures. Slow desorption was dominated by source materials, whereas the extents and rates of rapid desorption (Frap and krap) were more controlled by the quantity of soil organic matter (SOM), rather than quality of SOM (as in solvent-spiked soils). The results of this study challenged the role of PAH source materials as 'sinks' and led to the proposed roles of coal tar and pitch and source materials alike as 'reservoirs' with a risk-driven perspective.


Subject(s)
Coal Tar , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Carcinogens , Coal Tar/chemistry , Kinetics , Polycyclic Aromatic Hydrocarbons/analysis , Solvents , Soil/chemistry , Soil Pollutants/analysis
5.
Chemosphere ; 289: 133207, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890619

ABSTRACT

Crude oil contamination greatly influence soil bacterial community. Proliferative microbes in the crude oil-contaminated soil are closely related to the living conditions. Oil wells in the Yellow River Delta Natural Reserve (YRDNR) region is an ideal site for investigating the bacterial community of crude oil-contaminated saline soil. In the present study, 18 soil samples were collected from the depths of 0-20 cm and 20-40 cm around the oil wells in the YRDNR. The bacterial community profile was analyzed through high-throughput sequencing to trace the oil-degrading aerobic and anaerobic bacteria. The results indicated that C15-C28 and C29-C38 were the main fractions of total petroleum hydrocarbon (TPH) in the sampled soil. These TPH fractions had a significant negative effect on bacterial biodiversity (Shannon, Simpson, and Chao1 indices), which led to the proliferation of hydrocarbon-degrading bacteria. A comprehensive analysis between the environmental factors and soil microbial community structure showed that Streptococcus, Bacillus, Sphingomonas, and Arthrobacter were the aerobic hydrocarbon-degrading bacteria; unidentified Rhodobacteraceae and Porticoccus were considered to be the possible facultative anaerobic bacteria with hydrocarbon biodegradation ability; Acidithiobacillus, SAR324 clade, and Nitrosarchaeum were predicted to be the anaerobic hydrocarbon-degrading bacteria in the sub-surface soil. Furthermore, large amount of carbon sources derived from TPH was found to cause depletion of bioavailable nitrogen in the soil. The bacteria associated with nitrogen transformation, such as Solirubrobacter, Candidatus Udaeobacter, Lysinibacillus, Bradyrhizobium, Sphingomonas, Mycobacterium, and Acidithiobacillus, were highly abundant; these bacteria may possess the ability to increase nitrogen availability in the crude oil-contaminated soil. The bacterial community functions were significantly different between the surface and the sub-surface soil, and the dissolved oxygen concentration in soil was considered to be potential influencing factor. Our results could provide useful information for the bioremediation of crude oil-contaminated saline soil.


Subject(s)
Petroleum , Soil Pollutants , Bacteria/genetics , Biodegradation, Environmental , Hydrocarbons , Rivers , Soil , Soil Microbiology , Soil Pollutants/analysis
6.
Harmful Algae ; 107: 102069, 2021 07.
Article in English | MEDLINE | ID: mdl-34456024

ABSTRACT

In 2006, species of Cochlodinium geminatum were first recorded as new, harmful algal bloom (HAB)-forming dinoflagellate, in the Pearl River Estuary, China. Previous studies indicated that allelopathy (the release of chemical compounds) is an important competitive strategy for C. geminatum in inhibiting the growth of phytoplankton competitors, however, little is known about the allelochemicals produced by this species. In this study, allelopathic compounds were characterized using a series of chromatographic techniques. Methanol extracts from cultures showed significant inhibitory effects towards the co-occurring phytoplankton, Akashiwo sanguinea, and potent hemolytic activity against rabbit erythrocytes. Solid phase extraction (SPE) fractions from a reverse phase SPE column, exhibited inhibitory and synergistic effects on A. sanguinea growth, of which fractions eluted in 80% and 100% methanol showed the strongest allelopathic activity. These fractions were further purified using reverse phase high performance liquid chromatography (HPLC), and six fractions were collected. Three fractions displayed strong inhibitory effects towards A. sanguinea, with 14%-25% inhibitory rates, but a higher 35% inhibitory rate was observed when fractions were combined, suggesting allelochemicals had synergistic allelopathic effects. Allelopathic activity also exhibited time dependent reduction when stored at -20°C. Furthermore, trypsin digestion and dialysis assays indicated C. geminatum produced multiple allelopathic compounds. Our study demonstrated that species of C. geminatum produced and released multiple allelopathic compounds of low polarity and sufficient hydrophilicity, which elicit important competitive advantages by inhibiting co-occurring phytoplankton, and promoting population growth.


Subject(s)
Dinoflagellida , Allelopathy , Animals , Estuaries , Harmful Algal Bloom , Phytoplankton , Rabbits
7.
Food Chem ; 362: 130148, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34098438

ABSTRACT

Agricultural products are often contaminated with trace amounts of pesticide residues. To ensure food safety, a reliable, sensitive, and efficient method that accurately identifies pesticide residues in a wide variety of foodstuffs is needed. This study applied a modified QuEChERS extraction technique, coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to optimize the identification of the cyflufenamid, a new broad-spectrum fungicide with unclear mode of action in toxicity, in 12 foodstuffs. The method has been validated according to the European Union SANTE/12682/2017 guidelines for its linearity, limit of detection (LOD), and limit of quantification (LOQ), indicating an excellent performance. The recovery of cyfluenamid in all matrix were ranged between 70.8% and 117.8%, with relative standard deviation (RSD) <15% which is much lower compared to other methods. The method has been used for determine cyfluenamid in foodstuffs followed the ISO17025:2017 measurement technical note, which demonstrated it is suitable for routine quantitative analysis of cyflufenamid in most of the popular commercial agricultural products.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fluorobenzenes/analysis , Food Contamination/analysis , Pesticide Residues/analysis , Tandem Mass Spectrometry/methods , Food Analysis/methods , Fruit/chemistry , Fungicides, Industrial/analysis , Limit of Detection , Reproducibility of Results , Vegetables/chemistry
8.
Sci Rep ; 11(1): 2064, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483606

ABSTRACT

This study investigated contamination status of eight trace elements (As, Cd, Cr, Hg, Pb, Cu, Zn and Ni) in farmland soils and crops at 535 sites across the Xinjiang Uygur Autonomous Region, Northwest China. Land use types of the sampling sites included vegetable patch, grain field and orchard. Our experimental results indicated all farmland soils were considered as trace element contamination based on the Nemerow comprehensive pollution index (NCPI > 1). However, 91.97% of the crop samples were uncontaminated according to the Chinese Risk Control Standard. Soils from the vegetable patch showed higher pollution level comparison with that from grain field and orchard. Health risks for both non-carcinogenic and carcinogenic risks were calculated through crop ingestion exposure pathway. Grain samples showed highest health risks, followed by melon and fruit, and vegetables. The health risks of crops were mainly driven by Cr and Cd. Crop consumption may pose risks for children but not adults. The source of trace element contamination in the different farmland soils varied and may be attributed to the different agricultural activities. Plant type had a greater influence on the trace element accumulation in crops compared with soil trace element contents and physicochemical properties.


Subject(s)
Crops, Agricultural/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Trace Elements/metabolism , China
9.
Chemosphere ; 271: 129566, 2021 May.
Article in English | MEDLINE | ID: mdl-33460896

ABSTRACT

Nitrogen amendment is known to effectively enhance the bioremediation of hydrocarbon-contaminated soil, but the nitrogen metabolism in this process is not well understood. To unravel the nitrogen metabolic pathway(s) of diesel contaminated soil, six types of nitrogen sources were added to the diesel contaminated soil. Changes in microbial community and soil enzyme genes were investigated by metagenomics analysis and chemical analysis through a 30-day incubation study. The results showed that ammonium based nitrogen sources significantly accelerated the degradation of total petroleum hydrocarbon (TPH) (79-81%) compared to the control treatment (38%) and other non-ammonium based nitrogen amendments (43-57%). Different types of nitrogen sources could dramatically change the microbial community structure and soil enzyme gene abundance. Proteobacteria and Actinobacteria were identified as the two dominant phyla in the remediation of diesel contaminated soil. Metagenomics analysis revealed that the preferred metabolic pathway of nitrogen was from ammonium to glutamate via glutamine, and the enzymes governing this transformation were glutamine synthetase and glutamate synthetase; while in nitrate based amendment, the conversion from nitrite to ammonium was restrained by the low abundance of nitrite reductase enzyme and therefore retarded the TPH degradation rate. It is concluded that during the process of nitrogen enhanced bioremediation, the most efficient nitrogen cycling direction was from ammonium to glutamine, then to glutamate, and finally joined with carbon metabolism after transforming to 2-oxoglutarate.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons , Metabolic Networks and Pathways/genetics , Metagenomics , Nitrogen/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis
10.
Environ Int ; 133(Pt A): 105186, 2019 12.
Article in English | MEDLINE | ID: mdl-31639608

ABSTRACT

The gastrointestinal mobilization and oral bioaccessibility of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) from soils remain unexplored, including associated incremental lifetime cancer risks. This study investigated the gastrointestinal mobilization of PAHs and their NERs from contrasting soils, using a physiologically based extraction test that incorporates a silicone-rod (Si-Org-PBET) as PAH sink. Associated cancer risks following soil ingestion were also evaluated. Four solvent-spiked and aged soils, and four long-term contaminated manufactured gas plant (MGP) soils, were utilized. Total-extractable PAH concentrations were measured after exhaustive solvent extractions of soils. We evaluated the PAH sorption efficiency of the silicone rods and associated sorption kinetics, using PAH-spiked silica sand as the contaminated matrix. We then assessed gastrointestinal mobilization of benzo[a]pyrene and benzo[a]pyrene NERs from the solvent-spiked soils, and mobilization of six PAHs and their NERs from the MGP soils. PAH oral bioaccessibility was determined. The incremental lifetime cancer risks (ILCRs), using Si-Org-PBET- and total-extractable PAH concentrations from the MGP soils, were calculated. Sorption kinetics modelling showed that 95% of mobilized PAHs sorbed to the silicone rods within 2-19 h, depending on PAH physico-chemical properties. Total-extractable and Si-Org-PBET extractable PAH concentrations exceeded health investigation levels (3 mg/kg based on benzo[a]pyrene toxic equivalent quotients) in soils. PAH oral bioaccessibility approached 100% for solvent-spiked soils, but only 24-36% for the MGP soils. Associated ILCRs exceeded target levels (10-5) for one MGP soil, particularly for 2-3 year olds, despite oral bioaccessibility considerations. In contrast, mobilized PAH NERs did not exceed health investigation and ILCR levels, as the NERs were highly sequestered, especially in the MGP soils. PAH nonextractable residues in long-term contaminated soils are unlikely to be mobilized in concentrations that pose cancer risks to humans following soil ingestion, and do not need to be considered in risk assessments.


Subject(s)
Gastrointestinal Tract/drug effects , Neoplasms/chemically induced , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , Benzo(a)pyrene , Eating , Humans , Polycyclic Aromatic Hydrocarbons/toxicity , Risk Assessment , Soil Pollutants/toxicity
11.
Sci Total Environ ; 691: 605-610, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31325860

ABSTRACT

The potential for bioaccumulation and associated genotoxicity of nonextractable residues (NERs) of polycyclic aromatic hydrocarbon (PAHs) in long-term contaminated soils have not been investigated. Here we report research in which earthworms, Eisenia fetida, were exposed to a soil containing readily available benzo[a]pyrene (B[a]P) and highly sequestered B[a]P NERs aged in soil for 350 days. B[a]P bioaccumulation was assessed and DNA damage (as DNA single strand breaks) in earthworm coelomocytes were evaluated by comet assay. The concentrations of B[a]P in earthworm tissues were generally low, particularly when the soil contained highly sequestered B[a]P NERs, with biota-soil accumulation factors ranging from 0.6 to 0.8 kgOC/kglipid. The measurements related to genotoxicity, that is percentage (%) of DNA in the tails and olive tail moments, were significantly greater (p < 0.05) in the spiked soil containing readily available B[a]P than in soil that did not have added B[a]P. For example, for the soil initially spiked at 10 mg/kg, the percentage of DNA in the tails (29.2%) of coelomocytes after exposure of earthworms to B[a]P-contaminated soils and olive tail moments (17.6) were significantly greater (p < 0.05) than those of unspiked soils (19.6% and 7.0, for percentage of DNA in tail and olive tail moment, respectively). There were no significant (p > 0.05) differences in effects over the range of B[a]P concentrations (10 and 50 mg/kg soil) investigated. In contrast, DNA damage after exposure of earthworms to B[a]P NERs in soil did not differ from background DNA damage in the unspiked soil. These findings are useful in risk assessments as they can be applied to minimise uncertainties associated with the ecological health risks from exposure to highly sequestered PAH residues in long-term contaminated soils.


Subject(s)
Benzo(a)pyrene/toxicity , Oligochaeta/physiology , Soil Pollutants/toxicity , Animals , Benzo(a)pyrene/metabolism , Comet Assay , DNA Damage , Soil Pollutants/metabolism
12.
Food Chem ; 300: 125183, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31336276

ABSTRACT

A reasonable, high sensitive and accurate analytical method for the determination of 20 allergenic disperse dyes in foodstuffs was developed and validated. The obtained results showed that an ultra high liquid performance chromatography system - equipped with tandem quadrupole mass spectrometry (UHPLC-MS/MS) proved to be ideal for the selected method enabling multidimensional processing of the samples. Under optimized conditions, validation results showed excellent linearity (5-1000 µg/L, r2 ≥ 0.997), limits of detection (LODs, 1.1-10.8 µg/kg), recoveries (60.2-110.3%) and precision (RSDs ≤ 12.6%) for the twenty disperse dyes under investigation. The developed method was successfully applied to the analysis of 20 disperse dyes in real foodstuffs demonstrating the validity and applicability of the current method for continuing monitoring of the selected dyes. The proposed UHPLC-MS/MS is thus proved to be a convenient, effective, sensitive and timesaving method for the isolation and determination of allergenic disperse dyes in edible packaging and other foodstuffs.


Subject(s)
Chromatography, High Pressure Liquid/methods , Food Analysis/methods , Food Coloring Agents/analysis , Tandem Mass Spectrometry/methods , Capsules/analysis , Fruit/chemistry , Limit of Detection , Sensitivity and Specificity
13.
Sci Total Environ ; 690: 647-653, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31301505

ABSTRACT

Higher soil pH and electrical conductivity (EC) were suspected to result in higher extractability and bioavailability of benzo[a]pyrene (B[a]P) in soils. In this study, we investigated the influence of pH, EC and ageing on the extractability of B[a]P in two contracting soils (varied largely in soil texture, clay mineralogy and organic carbon content) over 4 months. Dilute sodium hydroxide (0.2 mol L-1) and sodium chloride (0.1 mol L-1) solutions were used to adjust soil pH and EC either separately or simultaneously. Extractability of B[a]P in these soils was monitored using a mild solvent extraction using butanol (BuOH, end-over-end shake over 24 h), and an exhaustive mix-solvent extraction using dichloromethane/acetone (DCM/Ace, v:v = 1:1) facilitated by sonication and a subsequent NaOH saponification method following the DCM/Ace extraction. Results showed that increased pH and/or EC significantly increased the B[a]P extractability in the sandy soil (GIA). Variance analysis of contribution of pH and/or EC modification and ageing time on changes in B[a]P extractability indicated that in GIA > 55% and over 25% of the changes in B[a]P extractability was attributed to increased pH&EC and pH only respectively. While ageing resulted in >85% of the change in B[a]P extractability in the clayey soil (BDA), following by increased pH&EC (contribution < 15%). Large amount of non-extractable residue (NER) were formed over the ageing period, up to 95% and 79% in GIA/BDA and its modified soils, respectively. Significant correlations were observed between B[a]P BuOH extractability and the exhaustive sequential extraction using DCM/Ace followed by NaOH saponification for all soils (p < 0.001). With slopes of the correlations close to 1, our results indicated that the simple mild solvent BuOH extraction was equivalent to the complex sequential DCM/Ace and NaOH saponification extraction in these soils.

14.
PLoS One ; 14(2): e0212057, 2019.
Article in English | MEDLINE | ID: mdl-30811442

ABSTRACT

Biodiversity conservation, plant growth and spatial distribution of plant species are the central issues in contemporary community ecology. Ephemeral stream may influence soil properties, which in turn may determine biodiversity and function of an ecosystem in alluvial fan of arid desert region. Ephemeral stream is one of the most common natural disturbances, yet the effects of the ephemeral stream on plant communities in terms of species diversity and plant species distribution remain poorly studied. In this study, the information of species distribution, ephemeral stream beds ('washes'), and the characteristics of plant growth, i.e. height, crown area, were interpreted at different heights using the images of low altitude unmanned aerial vehicle (UAV). After that, soil properties such as soil texture (sand, silt and clay), soil water content, pH, soil organic matter, soil electric conductivity, soil bulk density and the percentage of gravel content, and their relationships with UAV data were assessed in order to explore the influences of ephemeral stream on species diversity, plant growth characteristics and species distribution in an alluvial fan of arid desert region. The results showed that deep-rooted plants were only distributed in washes whereas shallow-rooted plants were distributed in both washes and the outside of washes ('non-washes'). Species richness was significantly higher in washes than that in non-washes whereas the opposite pattern was true for abundance. Soil properties, plant height and crown area were higher in washes than that in non-washes. Plant height, crown area and the total number of individual plants increased with increasing wash width and per unit length of stream flow. This study highlights that the coupling factors of ephemeral stream, such as soil erosion, particle transport and sedimentation, can dramatically cause changes in soil properties and total number of individual plants, and hence, can influence species diversity, plant growth characteristics and spatial distribution of plant species in an alluvial fan of arid desert regions.


Subject(s)
Biodiversity , Plant Development/physiology , Desert Climate , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Linear Models , Rivers , Soil/chemistry
15.
J Hazard Mater ; 368: 72-80, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30665110

ABSTRACT

There is a lack of understanding about the potential for remobilisation of polycyclic aromatic hydrocarbons (PAHs) residues in soils, specifically after the removal of readily available fractions, and the likelihood to cause harm to human and environmental health. Sequential solvent extractions, using butanol (BuOH), dichloromethane/acetone, and methanolic saponification were used to investigate the time-dependent remobilisation of B[a]P residues in aged soils, after removal of readily available or total-extractable fractions. After 120 d of aging, BuOH-remobilised B[a]P were small or extremely small ranging from 2.3 ± 0.1 mg/kg to 4.5 ± 0.5 mg/kg and from 0.9 ± 0.0 mg/kg to 1.0 ± 0.1 mg/kg, after removal of readily available and total-extractable fractions, respectively. After removal of readily available fractions, the remobilisation rates of B[a]P residues were constant over 5 re-equilibration times, as shown by first-order kinetics. The amounts of B[a]P remobilised significantly (p < 0.05) decreased with aging, particularly in hard organic carbon-rich soils. After 4 years of aging, BuOH- and total-remobilised B[a]P were generally < 5% of the initially spiked 50 mg/kg. Based on the findings of this study, the potential or significant potential for B[a]P NERs in soils to cause significant harm to human and environmental health are minimal.

16.
Environ Sci Technol ; 52(21): 12295-12305, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30351040

ABSTRACT

The environmental and health risks associated with "nonextractable" residues (NERs) of polycyclic aromatic hydrocarbons in soils and their potential for remobilization remain largely unexplored. In this novel study, sequential solvent extractions were employed to interrogate time-dependent remobilization of benzo[a]pyrene (B[a]P) NERs and associated kinetics after re-equilibration (REQ) periods lasting 30 d in four artificially spiked soils aged for up to 200 days. Following sequential extractions of the re-equilibrated soils, remobilization of B[a]P NERs was observed and further confirmed by decreases in the absolute amounts of B[a]P recovered following methanolic saponification after REQ. Remobilization may occur through slow intercompartmental partitioning of more sequestered into less sequestered B[a]P fractions in soils. The amounts of B[a]P remobilized in soils decreased throughout aging following first-order kinetics, and the rates of decrease were slow but 2 to 4 times faster than those of extractable B[a]P before re-equilibration. Sandy-clay-loam soils with large amounts of hard organic carbon exhibited less NER remobilization compared to sandy soils. The amounts of remobilized B[a]P decreased significantly ( p < 0.05) with aging. Specifically, butanol-remobilized B[a]P in soils spiked at 10 mg/kg and 50 mg/kg B[a]P ranged from 0.15 to 0.39 mg/kg and 0.67 to 2.30 mg/kg, respectively, after 200 d of aging.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Benzo(a)pyrene , Soil , Soil Microbiology
17.
Anal Chem ; 90(21): 13104-13111, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30269489

ABSTRACT

The fate, impacts, and significance of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) in soils remain largely unexplored in risk-based contaminated land management. In this study, seven different methanolic and nonmethanolic alkaline treatments, and the conventional methanolic saponification, were used to extract benzo[ a]pyrene (B[ a]P) NERs that had been aged for 180 d from four contrasting soils. Up to 16% and 55% of the amount of B[ a]P spiked (50 mg/kg) into soils was nonextractable after 2 d and 180 of aging, respectively, indicating rapid and progressive B[ a]P sequestration in soils over time. The recovery of B[ a]P from soils after 180 d of aging was increased by up to 48% by the seven different alkaline extractions, although the extraction efficiencies of the different alkaline treatments did not differ significantly ( p > 0.05). Approximately 40% of B[ a]P NERs in the sandy-clay-loam organic matter-rich soil was recovered by the exhaustive alkaline extractions after 180 d of aging, compared to only 10% using conventional methanolic saponification. However, the amounts of B[ a]P NERs recovered depend on soil properties and the amounts of NERs in soils. A significant correlation ( R2 = 0.69, p < 0.001) was also observed between the amounts of B[ a]P recovered by each of the seven alkaline extractions in the contrasting soils and corresponding NERs at 180 d of aging, indicating a potential association warranting further investigations. Extraction techniques that estimate the amounts of PAH NERs recoverable in soil can help give a better understanding of the fate of NERs in soil.

18.
Anal Chem ; 90(19): 11703-11709, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30134659

ABSTRACT

The fate and behavior of polycyclic aromatic hydrocarbons (PAHs) in soil are of interest in the risk assessment of contaminated land and are usually based on determinations of fractions extracted from soil. For decades, either single- or sequential-solvent extractions have been used to determine PAH extractability in soils; however, there is a lack of certainty as to which fractions are being extracted by these techniques. This study is the first report of differences and similarities in the extractability of benzo[ a]pyrene (B[ a]P) in four contrasting soils (sandy loam, loamy sand, clayey loam, and sandy) when determined using both single-solvent (dichloromethane/acetone (DCM/Ace) mixture) and sequential-solvent (butanol followed by DCM/Ace) extraction. Residues after extraction were subjected to methanolic saponification (MeKOH). Butanol (BuOH) extractability and total extractability of B[ a]P following sequential-solvent extraction decreased significantly ( p < 0.05) with time after addition of B[ a]P. The decrease in BuOH extractability was particularly marked in the organic-matter-rich clayey-loam soil, which also had the largest (>40%) amounts of nonextractable residues. The cumulative amounts of B[ a]P extracted in each soil by single- and sequential-solvent extractions were similar ( p > 0.05) at each aging period, which indicated access to similar B[ a]P fractions in soil by both solvent extractions. The similarities in the amounts of B[ a]P nonextractable residues recovered by MeKOH from pre-extracted soils, through either of the extraction methods, confirms that the total extractable B[ a]P fractions from both methods are similar.

19.
Article in English | MEDLINE | ID: mdl-29710849

ABSTRACT

Chronic exposure to arsenic (As) is a global concern due to worldwide exposure and adverse effects, and the importance of incorporating bioavailability in the exposure assessment and risk assessment of As is increasing acknowledged. The bioavailability of As is impacted by a number of soil properties, such as pH, clay and metal concentrations. By retrieving 485 data from 32 publications, the aim of this study was to determine the relationship between selected metals (Fe and Al) and As bioavailability. In present study, the bioaccessibility (BAC) data measured by in vitro approaches were converted into bioavailability data based on the previously determined relationship between BAC and bioavailability. The As relative bioavailability (RBA) was summarized to be 24.36 ± 18.49%, which is in the range previously reported. A significant association between Fe concentration and the bioavailability of As was observed while this association varied for different types of RBA data. This disparity may suggest a non-reliable association between Fe and As bioavailability. The correlations between logarithmically transformed total content of Fe + Al and As bioavailability is then outlined: RBA = (−8.40 ± 1.02) × Ln(Fe + Al) + (58.25 ± 4.09), R² = 0.25, p < 0.001, n = 212. Jackknife resampling was also applied to validate the relation between total content of (Fe + Al) and As bioavailability, which suggested that the relation is robust. This is the first pooled study to address the relations between selected metal concentrations and As bioavailability, which may provide some implications to establish soil properties-based RBA prediction for As.


Subject(s)
Arsenic/analysis , Metals/analysis , Soil Pollutants/analysis , Soil/chemistry , Arsenic/chemistry , Biological Availability , Data Analysis , Iron/analysis , Risk Assessment
20.
Sci Total Environ ; 613-614: 1140-1153, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28954375

ABSTRACT

The bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soil underpin the risk assessment of contaminated land with these contaminants. Despite a significant volume of research conducted in the past few decades, comprehensive understanding of the factors controlling the behaviour of soil PAHs and a set of descriptive soil parameters to explain variations in PAH bioavailability and bioaccessibility are still lacking. This review focuses on the role of source materials on bioavailability and bioaccessibility of soil PAHs, which is often overlooked, along with other abiotic factors including contaminant concentration and mixture, soil composition and properties, as well as environmental factors. It also takes into consideration the implications of different types of risk assessment (ecological and human health) on bioavailability and bioaccessibility of PAHs in soil. We recommend that future research should (1) account for the effects of source materials on bioavailability and bioaccessibility of soil PAHs; (2) adopt non-disruptive methods to analyse soil components controlling PAH sequestration; (3) integrate both natural organic matter (NOM) and xenobiotic organic matter (XOM) while evaluating the influences of soil organic matter (SOM) on the behaviour of PAHs; and (4) consider the dissimilar desorption scenarios in ecological risk assessment and human health risk assessment while assessing PAH bioavailability and bioaccessibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...